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The worm Caenorhabditis elegans is a well-studied model organism in numerous 

aspects of its biology. This small free living nematode has less than 1,000 cells, but shows 

clear conservation in both signaling and behavior to mammals in aspects of appetite 

control. This is of importance to humans, where failure of appetite control is a major factor 

in the unprecedented obesity epidemic that we see today.  

In general, worm behavior reflects its internal nutritional state and the availability 

and quality of food. Specifically, worms show a behavioral state that mimics aspects of the 

mammalian behavioral satiety sequence, which has been termed satiety quiescence. We 

have used locomotion tracking and Hidden Markov Model analysis to identify worm 

behavioral state over time, finding quiescence along with the established worm locomotive 

behaviors roaming and dwelling. Using this analysis as well as more conventional cell 

biology and genetic approaches we have further investigated satiety signaling pathways. 

We have found that the neuron ASI is a major center of integration of signals regarding the 

internal nutritional state of the worms as well as the nutritional content of its environment. 

Our results show that cGMP causes levels of the TGFβ ligand to be increased in fasted 

worms, which is then released and binds to its receptor on the RIM and RIC neurons. This 

signaling connects nutritional state to behavioral response, promoting the sleep-like 

behavioral state satiety quiescence. Additionally, we have begun a candidate approach 

examining several other groups of signaling molecules for potential roles in satiety 

quiescence signaling including cannabinoids, multidrug resistance proteins, and 

neuropeptides. The result of this investigation is a better understanding of mechanisms of 
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satiety quiescence signaling as well as a new tool that provides highly quantitative, 

unbiased, and automated data to aid in our ongoing work.  
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1. Background 

1.1 The Epidemic of Obesity 

Energy homeostasis, the balance between food intake and metabolic activity, is an 

essential function for any organism. Through selective pressure, animals have adapted 

mechanisms to survive in times of food surplus and scarcity. In our current environment, 

we no longer find ourselves in a dynamic state of energy supply and demand; food is 

constantly available and our lifestyle has become increasingly sedentary, which has led to 

an epidemic of obesity with one third of the United States population diagnosed as 

clinically obese (1,2). Obesity leads to numerous secondary health problems including 

heart disease, diabetes, high blood pressure, liver disease, and cancer, reducing quality of 

life as well as placing a significant burden on the healthcare system (3). Understanding of 

the causes of obesity will allow for new and more effective approaches to treat the 

underlying problem of obesity rather than the secondary health conditions that arise from 

it.  

While obesity is a result of complex interactions among biology, behavior, and 

environment, twin, adoption, and other family studies show that there is a heritable 

component to body mass index (4). Observing obesity trends in the United States suggests 

that there is a subset of our population that is susceptible to obesity and a subset that is 

resistant to obesity (4–6). Since the discovery of the leptin gene and its receptor (7,8), 

investigation of “obesity genes” has opened the research into molecular components of 

obesity. These genes are molecular components of the physiological system that regulates 

energy balance matching energy intake to energy expenditure (8). Currently there are 11 
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genes know to be monogenic causes of obesity (9). Many of these genes are implicated in 

appetite control, as the loss of function results in excessive energy intake (10). However, 

single gene mutation accounts for only 5-6% of severe cases of childhood obesity (5).  

Much more relevant to the widespread problem of obesity is the complex signaling 

which regulates the balance of energy intake, storage, mobilization, and expenditure. These 

genes  encode the physiological components of energy regulation where single nucleotide 

polymorphisms and regulation at the transcriptional, translational, and post-translational 

levels are likely to lead to predisposition or resistance to obesity. It is desirable to have a 

complete understanding of the molecular mechanisms of energy metabolism. One of the 

most significant factors in energy imbalance is the mechanism of appetite control. 

 

1.2 Satiety 

Satiety, the sensation of being full that causes the cessation of feeding, is governed 

in mammals by a complex signaling pathway that originates in the gut, is conveyed by 

several endocrine signaling pathways, and is integrated in the central nervous system 

(11,12). This signaling has been found to result in a fixed behavioral sequence where the 

animal stops eating, grooms itself and explores for a short time, then rests or sleeps in what 

has been termed the Behavioral Satiety Sequence (13–15). This behavior is widely 

conserved, having also been observed in birds (16). In mammals, satiety signals from the 

gut and adiposity-related signals are communicated by endocrine factors which are 

integrated in the hypothalamus (11,12,17). The hypothalamus has been well established as 



www.manaraa.com

4 

a site of appetite control regulation, starting with classical experiments by Hetherington 

and Ranson (1940) where food intake could be increased to induce obesity or decreased to 

induce starvation depending on which area of the hypothalamus was damaged by 

electrolytic lesions (18,19). This points to a major component of appetite control regulation 

being signaled neuronally.  

Recently, our lab has found a behavior in C. elegans that resembles mammalian 

satiety. After being fasted and refed, worms stop moving, stop feeding, and enter a sleep-

like state termed satiety quiescence (20). Like mammalian satiety, satiety quiescence 

depends requires high quality food and originates with signals from the gut, and is 

conveyed by neuropeptides (20).  

Satiety quiescence behavior is regulated by insulin, Transforming Growth Factor 

beta (TGFβ), and cyclic Guanosine Monophosphate (cGMP). Insulin is well known to 

control food intake in mammals and TGFβ has been linked to the anorexia seen in cancer 

patients (21,22). Recently, Valentino et al. (23) showed that mice lacking the uroguanylin 

gene, which encodes a ligand for a membrane bound guanylate cyclase that produces 

cGMP, have higher food intake and become obese. They found that the uroguanylin-

GUCY2C receptor works as a canonical satiety signaling system: uroguanylin is released 

from the gut and binds to GUCY2C in the hypothalamus. Together, the fact that these three 

signaling pathways regulate a conserved behavior indicates that there is a strong 

evolutionary conservation of the control of food intake in animals, meaning that additional 

genes discovered in worms to regulate this behavior have a high likelihood to have 

homologs in mammals with conserved functions.  
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1.3 Caenorhabditis elegans as a model organism 

Balancing energy demand with a dynamic environment of nutrient availability is a 

vital task for all organisms. Therefore the mechanisms that underlie the metabolic, 

physiological, and behavioral processes essential to energy balance are thought to have 

evolutionarily ancient origins (24,25). The nematode Caenorhabditis elegans has recently 

emerged as a leading model for studying energy metabolism (24,26–28), where many 

molecules and mechanisms of action are conserved but the signaling pathways and 

neuronal circuitry are much simpler, making them easier to elucidate than mammalian 

systems.  

C. elegans are self-fertilizing hermaphrodites (~0.05% become males through a 

non-disjunction event of the sex chromosome), have 959 somatic cells, including 302 

neurons, and have an invariant developmental cell lineage. They grow from an egg to a 

reproductive adult in ~2.5 days, and produce ~300 progeny. They are easily and cheaply 

cultivated in large numbers in lab conditions. Importantly, they are very genetically 

malleable, with transgenic animals created simply by injecting a transgene into the gonad 

of an adult, and RNA interference accomplished simply by feeding RNAi expressing 

bacteria to the worms. Combined with the ease of cultivating animals in large numbers, 

worms are an attractive model organism for forward and reverse genetic screens to uncover 

new signaling components in a variety of pathways. This has made the worms a powerful 

genetic system and has allowed for genome wide investigation into the numerous aspects 

of energy metabolism and resulted in the discovery of many new genes playing key roles 

in a variety of pathways involved in energy metabolism (24,27).  
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1.4 Worm behavior and behavioral states 

Food is one of the most important determinants of an animal’s behavior. Some of 

the effects of food are obvious: if there is food, an animal may eat, while if there is no 

food, or if the food available is poor in quality, it may instead search for new food (see, 

e.g., Shtonda and Avery (29)). But other effects are complex and depend on the animal’s 

internal state: how recently it has eaten, the presence of food in the digestive tract, the 

quantity and nature of stored reserves such as fat or glycogen. Information about 

nutritional state is communicated within the animal by a complex and only partly 

understood system of signals, and much of the animal’s computational machinery is 

devoted to dealing with food and nutrition (30). Better understanding of these signals 

might help in treating disorders of feeding, nutrition, and energy balance ranging from 

anorexia to obesity.  

C. elegans feed by pumping bacteria through the pharynx into a teeth-like structure 

called the grinder, which is connected to the intestine (31). Food availability and feeding 

history are two of the most significant factors affecting worm feeding behavior (32–35). 

Food seeking behavior in worms is modulated by food quality (which we have 

operationally defined by the ability of the bacteria to support worm growth), which 

correlates inversely with bacterial size (29).  

Despite its simple nervous system, the nematode C. elegans has a complex array of 

signals to control feeding and food-related behavior (28,36,37). Indeed, it is only a small 

oversimplification to say that in the C. elegans hermaphrodite all behavior is food-related, 

since food and nutritional state affect every behavior that has been tested, often 
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profoundly. Locomotive behavior has been studied with particular intensity. Previous 

workers have described three behavioral states that characterize the locomotive response to 

food: roaming, dwelling, and quiescence. 

When actively feeding, worms alternate between roaming and dwelling (38–40). 

Roaming worms move swiftly and relatively directly from one place to another, while 

dwelling worms move slowly and reverse frequently, thus covering little distance. 

Roaming and dwelling are respectively exploration and exploitation behaviors. Shtonda 

and Avery (29) and Ben Arous et al. (39) showed that worms roam more on low-quality 

food and dwell more on high-quality food. An additional behavioral state, quiescence, has 

recently been identified and characterized as a sleep-like state (20,41,42). We found that 

worms enter quiescence when they become satiated (20). Together, these studies show that 

locomotive activity is determined by nutritional status and that nutritional status can 

regulate switching between behavioral states.  

Studying satiety quiescence is problematic because quiescent worms are easily 

disturbed; quiescent worms wake up after about a minute of observation under conditions 

where they spend most of their time in quiescence (20,43). While locomotion tracking to 

identify behavioral state has become more common, a consistent method of identifying 

behavioral states has not emerged (29,38,39,44). These methods of behavioral state 

identification parse roaming and dwelling but do not lend themselves to identifying 

quiescence. Additionally, attempts to identify behavioral state have not been done under 

conditions where satiety quiescence is enhanced- fasting and refeeding worms on high 

quality food. One consequence of this limitation is that we know little of the kinetics of 
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quiescence: do worms cycle in and out of quiescence, and if so, at what rate? Which 

molecular mechanisms and which neurons and circuits regulate it? To address these 

deficiencies, we tracked worm locomotion over long periods of time under conditions 

where satiety quiescence is enhanced and developed a Hidden Markov Model analysis to 

identify worm behavioral state over time. Subsequent to our publication of this method 

(45,46), HMM analysis was used by another C. elegans group to identify worm behavioral 

state (47). However, like previous efforts, this only identifies roaming and dwelling 

behavior and so the HMM was optimized to a two-state model.  

 

1.5 TGFβ and cGMP signaling in satiety quiescence 

cGMP and TGFβ are two of the major signals regulating worm growth and 

development. Mutations in both pathways affect dauer formation, egg laying, fat storage, 

and body size (38,48–52). In addition, both pathways are required for satiety quiescence 

signaling, where we have shown that a gain of function allele of the cyclic GMP dependent 

protein kinase egl-4 suppresses the quiescence defect of worms with a mutation in the 

TGFβ ligand daf-7 (20). This places egl-4 downstream of daf-7 in satiety quiescence 

signaling.  

cGMP is a potent signaling molecule that is used across diverse taxa from bacteria 

to humans (53–55). cGMP is synthesized by guanylyl cyclases and degraded by 

phosphodiesterases, of which worms have 34 guanylyl cyclases (27 receptor type and 

seven soluble) and four predicted phosphodiesterases (56,57).  In worms, guanylyl 
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cyclases has been shown to play a role in numerous behaviors in addition to satiety 

quiescence including olfaction, thermosensation, oxygen sensation, and alkalinity 

sensation (52,58–61).  

There are two well-known targets of cGMP in worms: a cyclic GMP dependent 

kinase, EGL-4, and a cyclic GMP gated channel formed by a heteromeric complex of 

TAX-2 and TAX-4 (38,62,63). Worms with mutations in these gene show metabolic 

phenotypes. tax-2 or tax-4 mutants show defective chemotaxis, thermotaxis, social feeding, 

and oxygen sensation and egl-4 mutants show large body size, increased fat storage, and 

altered behavior while all mutants have an increased tendency to enter dauer (38,49,62–

66). Additionally, there is a gain-of-function allele of egl-4 in worms that has opposing 

phenotypes (67).   

Importantly, the cGMP-dependent protein kinase has been found to be playing a 

conserved role in food acquisition and energy homeostasis (68). A natural polymorphism 

in the gene of this cGMP-dependent protein kinase in Drosophila gives rise to two 

different phenotypes in food seeking behavior and acquisition (69,70). In mice, a cGMP 

signaling axis has recently been found to convey satiety signaling in the hypothalamus 

(23). Additionally, there is evidence that cGMP is playing a conserved role in olfaction and 

taste in mammals (71–73) and learning and memory in both Drosophila and mammals 

(74,75).  

The canonical TGFβ pathway consists of a ligand binding to type I and type II 

serine/threonine kinase receptors. Ligand binding causes the receptors to assemble into 

complexes and activate by phosphorylation. This induces a signaling cascade where Smads 
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and co-Smads are activated by phosphorylation and translocate to the nucleus to regulate 

gene transcription. Another class of inhibitory Smads act to antagonize this signaling (76). 

C. elegans have strongly conserved TGFβ signaling with several ligands, two type I 

receptors, one type II receptor, and many Smads and co-Smads with clear orthologs to 

Drosophila and mammalian genes (77).  

Mutations in the TGFβ pathway in C. elegans lead to either constitutive dauer 

formation or defective dauer formation and this phenotype was used to elucidate the 

pathway by genetic screens and epistatic analysis (78–81). Dauer formation is where 

worms enter the dauer diapause, life stage where worms stop developing and are able to 

weather harsh conditions such as high temperature, overcrowding, and low food (82). 

Laser ablation of the ASI neuron also makes worms become dauer formation constitutive 

(83,84).  

TGFβ can be thought of as a signal to convey that the worm is in a good 

environment. The TGFβ ligand daf-7 is highly expressed when the worm has abundant 

food and expressed at a much lower level when the worm is starved (50). High daf-7 

expression causes worms to undergo the reproductive life cycle while low levels of daf-7 

cause worms to become dauers.  

While egl-4 is widely expressed in neurons, intestine, hypodermis and muscle, daf-

7 is expressed in only the ASI neuron (38,49–51,85). However, its receptors daf-1 and daf-

4 are widely expressed (86–88). The expression of daf-7 is dependent on the membrane 

guanylate cyclase DAF-11, which is expressed in at least five pairs of amphid neurons, 
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including ASI (64,89). Together, this points to a major intersection of cGMP and TGFβ 

signaling pathways in the ASI neuron.  

 



www.manaraa.com

12 

2. Results and Discussion 

2.1 Roaming, dwelling, and quiescence can be detected by HMM analysis-  

Motion recording and analysis 

To quantify quiescence over relatively long time periods, we developed an 

automated procedure to monitor worms. Because quiescence is suppressed by the presence 

of other worms (20), only a single worm was recorded at a time. To avoid mechanical 

disturbance, we did not mechanically track the worm, but instead placed it on a small spot 

of food, which did not move during recording. To test whether worms became quiescent 

under these conditions, we measured their speed of movement over time. We found long 

periods of inactivity under conditions where quiescence is enhanced, fasting and full 

refeeding on high quality food (Figure 1A). Worms that are not fasted, fasted and refed on 

poor quality food, or egl-4(lf) worms fasted and refed on high quality food did not show 

this inactivity (Figure 1B-D). Additionally, we found that worms in conditions where 

quiescence is enhanced show a pattern of switching between active and inactive states 

(Figure 1E). We initially quantified this data by calculating the average speed and the 

percent of time at which speed was less than 1 μm s
-1

. Average speed was lower and time 

at low speed was greater under conditions that promote quiescence (Figure 1F,G). These 

results suggest that satiety quiescence occurred under our recording conditions, although 

probably not at the level previously inferred for completely undisturbed animals (20).  

We operationally define food quality by its ability to support worm growth. This is 

generally inversely proportional to bacterium size meaning that large bacteria are poor 
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Figure 1. Worm locomotion reflects nutritional status.  

A. A representative plot of worm speed over time under conditions where satiety 

quiescence is enhanced after fasting and refeeding wild-type worms on high quality food. 

B-D. A representative plot of worm speed over time under conditions where satiety 

quiescence is impaired with B) wild-type worms nonfasted on high quality food, C) wild-

type worms fasted and refed on poor quality food, D) worms with egl-4 loss-of-function 

mutation fasted and refed on high quality food.  

E. A 20 minute timecourse of worm speed after fasting and refeeding on high quality food 

shows that worms seem to alternate between states of activity (black bar) and inactivity 

(gray bar). For this simple determination of active and inactive, states were determined 

subjectively.  

F. The mean speed of the worm in each experiment was calculated and the average taken 

to give the mean speed of worms for each of the four conditions listed above (1A-D). 

Following Kruskal-Wallis ANOVA (p < .001 for both), **p < .01, ***p < .001 by Mann-

Whitney U-test.  
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quality food and small bacteria are high quality food. To modulate food quality, we treat 

the bacteria with aztreonam to inhibit cell wall separation which results in long strands of 

connected bacteria (Figure 2A, B). This has previously been done to distinguish odor from 

nutritional signaling effects and has been shown to affect worm behavioral state (39,90). 

To prepare the bacteria as poor quality food, we use a shorter incubation time than these 

previous studies. I verified that worms are still able to ingest bacteria treated this way by 

using HB101 that expresses mCherry and viewing fluorescence through the gut. 

Previous studies (38,39) quantified two characteristics of the worm’s motion: speed 

and change of direction (referred to as “curvature” by Ben Arous et al. (39) and “turning” 

by Fujiwara et al.(38)). Change of direction cannot be measured accurately when the worm 

is moving slowly. To solve this problem, we measured speed, change of speed (tangential 

acceleration), reversal, and turning (radial acceleration) from each set of three successive 

points (see Motion characteristics in Methods). To illustrate motion characteristics of 

roaming, dwelling and quiescence, we show three short movie segments that illustrate 

typical roaming, dwelling, and quiescence behavior (Figure 3; see Statistically typical 

tracks in Methods). We found two differences between roaming and dwelling. First, 

consistent with Fujiwara et al. (38), reversals were much more frequent in dwelling. 

Second, during dwelling acceleration was correlated with speed. During roaming, in 

contrast, there was no obvious correlation of speed with acceleration.  

Our results showed mostly low radial acceleration during dwelling, which appeared 

to contradict its previous description as the state with frequent changes in direction. 

However, after calculating speed and absolute angular change in direction across all our  
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Figure 2. Treating bacteria with aztreonam increases bacterium size.  

A. Nontreated E. coli strain HB101. 

B. E. coli strain HB101 treated with aztreonam form long strands, increasing its size. 
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Figure 3. Motion characteristics of roaming, dwelling, and quiescence. 

A-F. Short movie segments illustrating statistically typical roaming (A, B), dwelling (C, 

D), or quiescence (E, F) (chosen as described under Statistically typical tracks in Methods) 

were analyzed to determine speed, acceleration, and reversal at each time. The tracks are 

shown in A, C, and E. Time is indicated by color. Note the difference in scale between A 

and the other two. The grey ellipses are 1.2 mm long × 0.1 mm wide, about the size of the 

worm.  

B, D, F: Tangential and radial acceleration are plotted on the x and y axes. Speed is 

indicated by color, with the lowest and highest speeds indicated by purple and red. (Color 

is normalized within each track, so that, for instance, red points within the dwelling plot 

represent a lower speed than red points in the roaming track.) Reversal is indicated by 

filled circles, and nonreversal by empty circles.  
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tracks, we found that change in direction is almost entirely reversal. “Change in direction” 

conflates two distinct behaviors, reversal and turning. The large average angles reported 

previously for dwelling and roaming (39) are because a majority of nonreversals—angles 

near 0°—are averaged with a substantial minority of reversals—angles near 180° (Figure 

4). 

To capture the information available in the time course of behavior, we used a 

Hidden Markov Model (HMM). Behavioral state cannot be reliably determined by looking 

at a single point in time. For instance, although a dwelling worm moves most of the time, 

there are time points at which no detectable movement occurs. By themselves, these cannot 

be distinguished from quiescence. However, this ambiguity can be resolved by looking at 

the time course of behavior. A dwelling worm is still only at isolated points in time, while 

a quiescent worm remains so almost continuously. In HMM analysis the state inferred at 

one time depends, not just on behavior at that time, but also on states immediately before 

and after (Figure 5A, B). 

We deduced the characteristic behavior of roaming, dwelling, and quiescent worms 

from records acquired under conditions in which worms have been reported to spend most 

of their time in just one of these states (see Standard state fits in Methods). Figure 5C 

shows the result of such a fit to a recording of a well-fed wild-type worm on good food. 

Although there were brief periods during which behavior was ambiguous (e.g., just before 

1000 s, when there is a ~75% probability of dwelling and ~25% of quiescence), at most 

times one state was identified with close to 100% confidence.  

 



www.manaraa.com

21 



www.manaraa.com

22 

Figure 4. Speed histograms, speed, and direction change for roaming, dwelling, and 

quiescent worms. 

A. 363 tracks were analyzed by open-loop fits to the standard roaming, dwelling, and 

quiescent state descriptions defined by standard state analysis, then the time points were 

selected at which one state was assigned with at least 99% probability. At each such point 

we determined center of mass speed and change in direction. Blue is quiescence, green 

dwelling, and red roaming. To allow all three distributions to be clearly seen, the plot was 

cut off at 0.2. The probability of s < 5 μm s
-1

 for quiescence is 0.76. 

B-D. For each point classified as described in the legend to A, we determined speed and 

absolute change in direction of the center of mass. In all states the direction change is 

concentrated near 0° and near 180°, with a wider spread at low speeds as expected from the 

difficulty of accurately measuring directions when movements are small. Our motion 

analysis classifies as reversals those points with a direction change greater than 90°.  
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Figure 5. Hidden Markov Model analysis, standard state fits. 

A, B. A simplified explanation of how HMM analysis uses both time and behavior to 

determine state. The plots show a hypothetical record of speed vs time. The bell-shaped 

green and blue curves at the right of each plot show the probability for a dwelling or a 

quiescent worm to move at a given speed. The distributions overlap, because while 

dwelling worms usually move faster than quiescent worms, at some time points they move 

as little as a quiescent worm. (Although a quiescent worm doesn’t move at all, its 

measured speed will usually be positive because of small errors in the measurement of its 

position.) The problem is to determine what state the worm was in at the central time point, 

where it did not move. Looking at this point alone, one would conclude that the worm was 

probably quiescent, because the probability for a quiescent worm to move so slowly (PQ; 

panel B) is much higher than the probability that a dwelling worm will do so (PD; panel A). 

However, the behavior of the worm immediately before and immediately after is 

inconsistent with quiescence. Therefore, if the worm is quiescent at the central time point, 

it must have switched from dwelling to quiescence immediately before and must switch 

back immediately after. The probability that the worm is quiescent is therefore P
2

switch P
2

Q. 

If the time between points is small, the probability of a switch, Pswitch, is a small number, 

and Pswitch P
2

Q  << PD. The worm is thus correctly inferred to be dwelling. The actual 

analysis is more complicated, since other motion characteristics than speed are used, and a 

probability is assigned to each state at each time point.  

C. The results of standard state fit to a wild-type track. The lower plot shows speed; red,  
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Figure 5 continued. 

green, and blue lines in the upper plot show probability of the roaming, dwelling, and 

quiescence state at each point in time.  

The color bar at the top summarizes the probabilities. (The small gap is a brief period of 

missing data.) The change in behavior with time is most easily seen by looking at the 

frequency of very low speed (<20 μm/s). Such time points are a majority in quiescence, a 

substantial minority in dwelling, and almost absent in roaming. Most time points are 

assigned to a single state with near 100% probability, and the worm spent a substantial 

amount of time in each of the three. This is reflected in the high excess entropy, 0.857 bits. 

D. The results of a similar fit to the same data as in C, but scrambled into random order. 

The three-state fit did not have substantially more information than a single behavioral 

state, as shown by the very low entropy (S).  

E. Rate graphs summarizing state probabilities and transition rates between states based on 

analysis of well-fed wild-type worms on either good food (E. coli HB101), poor food 

(HB101 treated with aztreonam) or a mixture of good and bad. The area of each circle is 

proportional to the amount of time worms spend in that state (red = roaming, green = 

dwelling, blue = quiescence). Thicker arrows represent faster switching from one state to 

another. Darker arrows are more accurately measured, lighter grays represent less accurate 

measurements, based on variability from one worm to another. *p < 0.05, **p < 0.01, ***p 

< 0.001, different from good food, Mann-Whitney U-test. Thus, for instance, worms 

switch from dwelling to roaming more rapidly (p < 0.01) on poor food than on good and 

spend more time roaming (p < 0.001). Number of worms for each graph as in F.  
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Figure 5 continued. 

F. Mean speed of roaming worms. These data are based on the same tracks as E. Number 

of worms in each experiment is shown above the bar. *p < 0.05, ***p < 0.001, Mann-

Whitney U-test. 
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We developed a statistic, excess entropy, to quantify the extent to which the 

analysis helped to explain behavior. The fit in Figure 5C had an entropy of 0.86 bits. (The 

maximum possible is log23 ≈ 1.58.) To test if the fit truly detected coherent time-dependent 

changes in behavior, we scrambled the data and repeated the fit. Figure 5D shows an 

example of one such fit to scrambled data. No state changes are detected, and the entropy 

is only 0.074 bits.  

Using this analysis, we confirmed and extended earlier results. For instance, low-

quality food suppresses quiescence (20) and promotes roaming (20,29). We confirmed 

these results (Figure 5E). Further, our analysis allowed us to estimate the rate at which 

worms switch from one state to another. The suppression of quiescence was explained 

mainly by a decrease in the rate at which worms switch from dwelling to quiescence 

(Figure 5E).  

A simple hypothesis for the control of locomotory behavior is that food quality and 

other conditions affect only the rates at which worms switch between states. Under this 

hypothesis worms on poor food would spend more time roaming, but during the time they 

spend roaming, worms would behave the same on good food and on poor food. The 

alternative is that the behavior of a worm depends not only on the state it is in, but also on 

conditions. Under this hypothesis roaming worms might behave differently on good food 

and on poor food.  

To test these hypotheses, we compared the motions of worms in the same state 

under different conditions. Figure 5F shows an example: the speed of worms on good food, 

poor food, or a mixture, measured only during the time they spent roaming. The simple 
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hypothesis was decisively rejected. Roaming worms on poor food moved faster than 

roaming worms on good food and roaming worms on mixed food, which was also 

observed by Ben Arous et al. (39), who reported that roaming worms move faster on poor 

food. 

 

2.2 Unbiased state discovery 

The observation that the behavior of a roaming worm depends on conditions such 

as food quality raised a difficult question: how are roaming, dwelling, and quiescence 

defined? Above we claimed that roaming worms moved faster on poor food. This claim is 

correct, if roaming is defined by the motions of worms under conditions that have been 

reported to promote roaming. However, speed is one of the characteristics that 

distinguishes dwelling and roaming. If poor food caused dwelling worms to move faster, 

they might be classified as roaming. If poor food in addition caused dwelling worms to 

reverse less and to accelerate less, any method that deduces behavioral state from these 

characteristic motions would classify the behavior as roaming.  

To address this problem, we developed an unbiased analysis in which state 

characteristics are derived directly from the behavior of a single worm (see Unbiased 

closed-loop fits in Materials and methods). Our fits of 363 recordings yielded a total of 

1083 state descriptions from 357 three-state and 6 two-state fits. A state description is the 

list of seven parameters that specify such behavioral characteristics as the probability of 

reversal, the mean speed, and the correlation between speed and acceleration. Each state is 



www.manaraa.com

29 

thus a point in a seven-dimensional space. Interestingly, however, most of the points lay 

close to a plane—93% of the variance is captured in two dimensions. It was thus possible 

to plot them in two dimensions while preserving most of their geometric relationships. 

Figure 6 shows such plots.  

We were able to identify regions of the plot that correspond to roaming, dwelling, 

and quiescence by considering their motion characteristics and by comparing our results 

with published results. The arrangement of states is roughly triangular (Figure 6G). The 

location corresponding to immobility is near the lower left, so this is the direction of 

quiescence. Speed increases towards the upper right of the plot, while reversal increases 

towards the lower left. Thus, upper right is the direction of roaming, which is characterized 

by high speed with few reversals. Covariance of acceleration and speed increases towards 

the upper left, which is thus the direction of dwelling.  

To more precisely identify regions with states, we looked at the results of specific 

experiments. Wild-type worms fasted for twelve hours then refed with good food for three 

hours alternate between quiescence and dwelling (20). (When not observed, worms so 

prepared spend most of their time quiescent, but watching them disturbs them in some 

unknown way, causing them to wake and dwell (20). Our recording conditions allowed 

some quiescence, but were disturbing enough that the worms also dwelled.) Each such 

worm had two high-probability states, one in a region close to the lower half of the left 

side of the triangle, and another near the center (Figure 6A), which we thus identified as 

quiescence and dwelling, respectively. On poor food wild-type worms roam. They spent 

most of their time in states near the right vertex (Figure 6B). The states of egl-4(lf) mutant  
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Figure 6. Geometry of behavioral states. 

This figure shows the two-dimensional arrangement of behavioral states discovered by 

unbiased open-loop fits. Each circle (except the black one near the bottom of each panel, 

which represents complete immobility) represents a single state from a single worm. The 

area of the circle is proportional to the amount of time the worm spent in that state. The 

gray background in A–F and H, representing all states discovered in all experiments, is 

shown for context. States are colored by experiment; the same colors are used in panels A–

E and G–H. Arrows show the directions in which three of the seven state parameters 

increase. Pr is the probability of reversal, µs is mean deskewed speed, and σas is the 

covariance of deskewed speed and acceleration.  

A–D. States discovered in four experiments. Lines join states discovered in the same 

worm.  

A. 14 wild-type worms, fasted for 12 hours, refed on good food (E. coli HB101) for 3 

hours, then recorded on good food.  

B. 12 wild-type worms, grown on good food and recorded on poor food. (Poor food is 

HB101 treated with aztreonam, which prevents cell division (39).)  

C. 12 mutant worms lacking cGMP-dependent protein kinase (PKG, encoded in C elegans 

by egl-4 (38)), grown and recorded on good food.  

D. 12 transgenic worms that express constitutively active PKG in ASI neurons, grown and 

recorded on good food.  

E. States from the four previous experiments plotted together.  
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Figure 6 continued. 

F. Regions of the triangle can be identified as roughly corresponding to roaming, dwelling, 

and quiescence, as described in the text.  

G. All behavioral states discovered in 49 experiments on 363 worms.  

H. States from all experiments on wild-type worms (80 worms total). These experiments 

differ only in whether the worms were well-fed or starved and refed, and in the quality of 

food on which they were recorded. 
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worms, which spend most of their time roaming even on good food (29), were in the same 

general region (Figure 6C). Worms engineered to express constitutively active cGMP-

dependent protein kinase in ASI neurons showed an unusual pattern that was never seen in 

wild-type worms. They alternated between two states, a less probable one near the 

boundary between dwelling and roaming, and a more probable one near the upper left 

corner of the triangle. We call the latter state hyperdwelling, since it exhibits the 

characteristics of dwelling even more strongly than a dwelling wild-type worm. Figure 6F 

summarizes the regions corresponding to roaming, dwelling, and quiescence.  

 

2.3 Are there discrete locomotive behavioral states? 

We were surprised that we did not find discrete, well-separated clusters 

corresponding to roaming, dwelling, and quiescence. Rather, as shown in Figure 6G, the 

observed states filled most of the triangle, sparing only the region between quiescence and 

roaming. This suggests that our previous view, that the worm has available to it three 

distinct patterns of locomotive behavior, might be too simple. Instead the worm may be 

able to continuously tune its behavior between these three patterns.  

We considered three alternative explanations for the failure to observe discrete 

clusters of states. First, the clusters might exist but be blurred by noise. There is error in 

every measurement. Perhaps the errors were so great as to spread the clusters until they 

merged with each other, giving a false appearance of continuity. This explanation was 

refuted by looking at single experiments. Figure 6A-D clearly show well-defined clusters 
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of states. Each of A and D, in fact, shows two well-separated clusters, and each worm in 

those experiments alternated between a state in one cluster and a state in the other. We 

clearly had the ability to resolve distinct patterns of behavior. Figure 6E emphasizes this by 

showing that the states discovered in the experiments of A-D occupy six distinct, well-

defined positions.  

Figure 6E suggests a second possible explanation for the lack of clusters. Although 

9 of our 49 experiments were done on wild-type worms, the rest were done on various 

mutant genotypes. Perhaps normal worms do have discrete roaming, dwelling, and 

quiescence states, but the unnatural behavioral patterns of mutants fill up the blank regions 

between the wild-type states. In fact, it was obvious that without the ASI::egl-4CA and 

egl-4(lf) experiments, the wild-type states of Figure 6A, B would form three discrete 

clusters (red and orange states in Figure 6E). To test this, we plotted all the states 

discovered in experiments on wild-type worms (Figure 6H). Even when we looked only at 

wild-type, discrete clusters were not evident.  

A third possible explanation for our failure to identify clusters is more complicated. 

The plots in Figure 6 show the disposition of states in two dimensions, but the actual state 

space is seven-dimensional. Perhaps roaming, dwelling, and quiescence are separated from 

each other in the full seven-dimensional space, but this separation is lost when they are 

projected onto a plane. While we cannot entirely exclude this possibility, we found no 

evidence for it. It is somewhat implausible on its face, since the two dimensions plotted 

capture 93% of the variance—any additional separation could occur only in the remaining 

7%. We examined state plots in 3 dimensions and looked at projections onto planes 
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containing each of the seven dimensions and found no evidence of discrete clusters. In 

addition, we attempted to automate the search for clusters using hierarchical cluster 

analysis based on all seven state characteristics (Figure 7). The results were disappointing. 

While by design cluster analysis always finds clusters, the state clusters were excessively 

sensitive to the details of the algorithm (different distance measures and linkage methods 

often produced widely different clusters) and to the data included (during the course of this 

work clusters often changed radically with the addition of a few new recordings). 

Furthermore, the clusters failed basic experimental consistency criteria. For instance, if the 

red, green, and blue clusters in Figure 7 corresponded to roaming, dwelling, and 

quiescence, we would expect that fasted and refed wild-type worms would alternate 

between a blue state and a green state. Some of them did, but in others the two main states 

were both green. We do not believe that the clusters identified by cluster analysis have any 

biological reality. 

 

2.4 Behavioral states are arranged in a triangle 

Looking at the arrangement of all states (Figure 6), we were struck by the 

impression that they fill out most of a triangle. To test this impression, we used a test 

recently described by Shoval et al. (91). We compared the area of the smallest polygon that 

contains the states to that of the smallest triangle that contains them (Figure 8A). If they 

were really arranged in a triangle, the smallest polygon that contains them would be a 
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triangle and the ratio of areas 1. Non-triangular points, in contrast, would give a smaller 

ratio. (For a circle, for instance, the ratio is ~0.605.) The actual ratio, 0.916, was  
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Figure 7. Hierarchical cluster analysis of states.  

A. Hierarchical clustering of state descriptions resulting from unbiased closed-loop fits. 

832 of the 1083 states plotted in Figure 6G, those with probability ≥10%, were clustered. 

The seven values constituting each description are plotted in the heat map below the 

dendrogram, and the top three clusters are highlighted in blue, green, and red.  

B. Identification of clustered states. States, plotted as in Figure 6, are identified by red, 

green, and blue dots according to which cluster they belong to.



www.manaraa.com

38 

 



www.manaraa.com

39 

Figure 8. Behavioral states are arranged in a triangle. 

A. Each of the 832 states with probability greater than 10% is plotted in two dimensions as 

in Figure 6. The black line is the smallest polygon that contains all of them (the convex 

hull). The area of this polygon is 90.5% that of the smallest triangle containing them, 

significantly greater than that expected if they are not constrained to a triangle (p < 10
−5

). 

The corresponding figure for a test using all the states, not just those with probability 

greater than 10%, is 90.8% (p < 10
−5

).  

B. An interpretation of the triangular state space. We suggest that the locomotive 

behavioral patterns available to a worm can be any mixture of three archetypal patterns, 

represented as red, green, and blue circles. Like primary colors, these mix to form a 

triangle of possibilities.
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significantly greater than that expected for a random arrangement of points at p < 10
-5

.  

 

2.5 Verifying previous results with TOBO 

To better compare different strains and conditions of worms using Hidden Markov 

Model analysis we calculated the percent time that worms spent in each behavioral state 

based on the most likely behavioral state that the worm is in over time (closed-loop fits, 

pure play analysis). Repeating what we had initially seen by looking at speed over time, 

average speed, and time at low speed, worms fasted and refed on high quality food show 

enhanced quiescence compared to worms that are not fasted, fasted and refed on poor 

quality food, and egl-4(lf) worms that are fasted and refed (Figure 10). In addition, this 

analysis finds that egl-4(gf) worms show enhanced quiescence under conditions where 

quiescence is not normally enhanced (nonfasted, which we had previously reported (20)) 

and was further enhanced when worms are fasted and refed (Figure 9).  

At this point, we have established this analysis and behavior as a highly 

quantitative method of determining worm behavioral state over time. The limitation was 

that we could only record one worm at a time. This limited the experimental throughput 

that we were capable of and precluded concurrent controls. Fortunately, we were in 

possession of a worm surveillance platform custom built by a former member of the Avery 

lab, Dr. Boris Shtonda, which holds nine cameras. We replaced the cameras (off the shelf 

security cameras) with high resolution cameras fitted with macro lenses, changed 

condensers for diffusers, and incandescent lights for LED light strips (Figure 10). We  
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Figure 9. Locomotion tracking and HMM analysis repeats previous findings in satiety 

quiescence behavior. 

Wild-type worms fasted and refed on high quality food spend about 60% of their time in 

the quiescent behavioral state. This is reduced in wild-type worms nonfasted or fasted and 

refed on poor quality food. Worms with egl-4 loss-of-function mutation show less time in 

the quiescent behavioral state after fasting and refeeding on high quality food. Worms with 

egl-4 gain-of-function mutation show enhanced satiety quiescence either fasted and refed 

or nonfasted. Number of tracks analyzed for each condition shown to the right of the data. 

Percent time in each behavioral state was determined by Pure Play Analysis. **p < 0.01, 

***p < 0.001 compared to wild-type fasted-refed, ##p < .01 compared to wild-type 

nonfasted Mann-Whitney U-test following Kruskal-Wallis ANOVA (p < .001). 
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Figure 10. TOBO. 

Custom built locomotion tracking platform with nine cameras. 

A. Point Grey Grasshopper cameras. 

B. Macro lenses. 

C. A single worm was placed on a plate for each recording. 

D. Semi-translucent diffusers.  

E. LED light strips were used for illumination. 
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have named this system TOBO (TOM and BORIS).  

One concern of using aztreonam to modulate food quality is whether the change in 

worm behavior is due to the change in food quality or because the worms are sensitive to 

the drug. To test this, we assayed worms on nontreated bacteria, bacteria incubated with 

aztreonam, and bacteria with aztreonam added after incubation. Both nonfasted and fasted-

refed worms show decreased quiescence and increased roaming when fed on aztreonam 

treated bacteria (this is the same condition referred to as ‘Poor quality food’ above). 

However, worms fed on bacteria with aztreonam added after the incubation period showed 

no difference in behavioral state from worms on nontreated bacteria both in fasted-refed 

and nonfasted conditions, showing that the effect on behavior is due to the worms 

responding to the bacteria and not aztreonam itself (Figure 11A).  

We additionally tested whether we could create an intermediate quality food by 

mixing high quality and poor quality food. Mixing 9:1 poor quality to high quality (v/v 

after the bacteria was centrifuged and diluted), showed this intermediate effect. In both 

conditions this suppressed roaming compared to worms on aztreonam treated bacteria and 

suppressed quiescence compared to worms on non-treated bacteria (Figure 11B).  

 

2.6 TGFβ regulation of satiety quiescence 

Having developed a method to identify satiety quiescence over time, we then were able to 

ask questions about what regulates this behavioral state. Mutations in the worm TGFβ 

signaling pathway impair satiety quiescence (20). Our locomotion tracking and HMM  
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Figure 11.Aztreonam treated bacteria acts as poor quality food.  

Standard state probabilities of worms which were concurrently assayed with wild-type 

worms using TOBO. 

A. Aztreonam was either not added to bacteria (Not Treated), incubated with the bacteria 

(Azt Treated), or added after the incubation (NI, Not Incubated). Both nonfasted worms as 

well as worms fasted and allowed to fully refeed on the indicated food source show 

decreased quiescence and increased roaming only with bacteria incubated with aztreonam. 

Adding aztreonam after incubating the bacteria has no effect, indicating that worms are 

responding to the effect aztreonam has on the bacteria and not the drug itself. 

B. Mixing not treated bacteria with aztreonam treated bacteria gives an intermediate food 

quality. After being centrifuged and diluted, aztreonam treated bacteria was mixed with 

nontreated bacteria (9:1 treated:nontreated, v/v) to create a mixed food. This food condition 

suppresses roaming in both nonfasted and fasted-refed worms compared to worms on 

aztreonam treated bacteria. Worms on mixed food show also show less quiescence than 

worms on nontreated bacteria.   

Number of tracks analyzed for each condition shown to the right of the data. Percent time 

in each behavioral state was determined by Pure Play Analysis. Experiments were done 

concurrently using TOBO. *p < 0.05, **p < 0.01 compared to wild-type not treated, ##p < 

.01 compared to wild-type aztreonam treated Mann-Whitney U-test following Kruskal-

Wallis ANOVA (p < .001).
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analysis repeated this finding, as daf-7 worms show decreased time in quiescence after 

both fasting and refeeding and nonfasted (Figure 12A). Since daf-7 is expressed in ASI, we 

also tested ASI ablated worms, generated by expression of recombinant caspase (92,93) 

and found that these worms show a similar decrease in quiescence both nonfasted and 

fasted-refed (Figure 12A). While ASI ablation has been reported to cause constitutive 

dauer entry (83,84), we do find a small percent of escapers that undergo the normal 

reproductive life cycle allowing us to maintain a population and test them in our assay. In 

both daf-7 and ASI ablated worms, quiescence is decreased and dwelling is increased. Our 

HMM analysis has shown that this is due to daf-7 and ASI- worms switching from 

quiescence to dwelling more rapidly than wild-type worms (Figure 12B).  

Because the HMM analysis is locomotion based but satiety quiescence is the 

cessation of both movement and feeding, we also quantified food intake. We accomplished 

this by fasting worms, refeeding them on mCherry expressing HB101, and quantifying 

fluorescence through the gut. Corresponding to the locomotion data showing decreased 

quiescence, daf-7 and ASI- worms both have increased food intake (Figure 12C). Since 

mutations anywhere in the TGFβ signaling pathway should impair quiescence, we also 

tested food intake of worms with a mutation in daf-1, daf-8, or daf-14 and found that they 

have a similar increase in food intake as daf-7 worms (Figure 12C). Since daf-7 expression 

is dependent upon the guanylyl cyclase daf-11 (89),  we additionally tested daf-7 

regulation by cGMP. We accomplished this by using a transgenic strain expressing daf-7 

fused to mCherry under the daf-7 promoter and quantifying the levels by measuring 

fluorescence. Fasting worms for 12 hours and refeeding for 3 hours on 
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Figure 12. TGFβ in ASI neurons promote the switch from dwelling to quiescence. 

A. Standard state probabilities of wild type, ASI ablated worms and daf-7 mutants show 

inhibition of satiety quiescence both fasted and fully refed as well as nonfasted. Data was 

collected before implementing TOBO and so was not done concurrently. Wild-type fasted-

refed and nonfasted data is repeated from Figure 9. *p < .05, **p < .01, ***p < .001 

compared to wild-type by Mann-Whitney U-test. 

B. DAF-7 from ASI regulates transition rates from dwelling to quiescence. Transition rates 

among states of wild type, ASI ablated worms and daf-7 mutants. Each diagram shows 

state probabilities and transition rates from one experiment after standard state fits. Each 

circle represents a state: light gray for quiescence, medium gray for dwelling, and black for 

roaming. The area of the circle is proportional to the probability of the state under those 

conditions. Each arrow represents a transition from one state to another. Thicker arrows 

represent higher transition rates. Darker arrows represent rates measured with high 

accuracy, paler arrows rates measured with poor accuracy. **p < .01, ***p < .001, by 

Mann-Whitney U-test.  

C. Representative pictures of wild-type and daf-7 worms after 12 hours fasting and 3 hours 

refeeding on mCherry expressing HB101. daf-7 show higher fluorescence reflecting more 

food intake. Quantification of fluorescence of canonical TGFβ signaling pathway mutants 

and ASI ablated worms eat more than wild-type worms after fasting and refeeding as all 

show higher fluorescence. 
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HB101 strain of E. coli (the same experimental design under which we find enhanced 

satiety quiescence increases DAF-7 levels (Figure 13). Fasting worms for 12 hours and 

placing them on 8-Br-cGMP treated plates (1 mM) in the absence of food caused a similar 

increase (Figure 13). However, nonfasted worms did not show a change in DAF-7 levels 

after treatment with 8-Br-cGMP for 3 hours (Figure 13). Additionally, we did not see a 

decrease in daf-7::mCherry fluorescence in starved worms compared to well-fed worms as 

had been previously reported (50). This could be due to mCherry being a very stable 

protein and so not being degraded as well as endogenous DAF-7 would be. Combined with 

the report that daf-7 is not expressed in daf-11 mutants (89) and our previous observation 

that egl-4(gf) suppresses the quiescence defect of daf-7 worms (20), this places cGMP both 

upstream and downstream of daf-7 in satiety quiescence signaling. Since daf-1 fat storage, 

feeding, and reproductive phenotypes are rescued by restoring the gene in the RIM and 

RIC interneurons (94), we also tested this rescue in satiety quiescence and found that it 

rescues this phenotype as well by both hand-eye and TOBO (Figure 14 and ref. 46). 

Additionally, laser ablation of the RIM and RIC interneurons rescues satiety quiescence in 

daf-1 worms (46), suggesting that RIM and RIC are suppressing satiety quiescence, 

presumably by synthesizing a hunger signal. These neurons are the source of octopamine 

synthesis, which has previously been shown to decrease pumping rates (95,96). 

Additionally, daf-7 has recently been shown to act as an environmental sensor signaling to 

RIM and RIC to inhibit tyraminergic and octopaminergic neurotransmissions (94). We 

therefore tested whether exogenous octopamine would suppress satiety quiescence but 

found that it did not show an effect (46). 
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Figure 13. Food and cGMP increase levels of the TGFβ ligand in fasted worms. 

A.  Representative images of worms expressing daf-7p::daf-7::mCherry. Left: Worms 

were fasted for 12 hours and either mock refed for 3 hours on water treated NGMSR 

plates, NGMSR plates treated to final concentration of 1 mM 8-Br-cGMP for 3 hours, or 

refed on HB101 for 3 hours. Right: Well-fed worms were placed on NGMSR water treated 

plates for 3 hours or NGMSR plates treated to 1 mM final concentration of 8-Br-cGMP for 

3 hours.  

B. Quantification of fluorescence intensity for conditions described in A. 

***p < .001 by Student’s t-test. 
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Figure 14. Restoring the TGFβ receptor DAF-1 in RIM and RIC rescues satiety 

quiescence in daf-1 worms after fasting and refeeding. 

Wild-type worms were tested concurrently with matched transgenic (expressing daf-1 in 

RIM and RIC under the tdc-1 promoter) and nontransgenic siblings. 

Number of tracks analyzed for each condition shown to the right of the data. Percent time 

in each behavioral state was determined by Pure Play Analysis. Experiments were done 

concurrently using TOBO.  

*p < 0.05, compared to wild-type not treated, #p < .05 compared to nontransgenic Mann-

Whitney U-test. 
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Together, this suggests that daf-7 is released from ASI and binds to the daf-1 receptor on 

RIM and RIC. This inactivates these neurons, causing an inhibition of hunger signaling 

and conveying quiescence. While octopamine is one of these hunger signals, it does not 

appear to be the satiety quiescence signal. Additionally, we know that egl-4 is signaling 

downstream of daf-7 but we do not yet know which cell(s) are responsible for this.  

 

2.7 egl-4 signaling in satiety quiescence 

 Exogenous 8-Br-cGMP both enhances quiescence in nonfasted worms and rescues 

the quiescence defect of daf-11 guanylyl cyclase mutants (46). Additionally, expressing 

daf-11 in the ASI neuron is sufficient to rescue its satiety quiescence defect (46). Our lab 

had previously found that the quiescence defect of egl-4 worms (cGMP-dependent protein 

kinase) is rescued by restoring egl-4 expression under the tax-4 promoter (expressed in a 

dozen head neurons, including ASI (38)) (20). Our locomotion tracking and HMM analysis 

repeated this result. Restoring egl-4 under its own promoter or the tax-4 promoter rescued 

percent time in quiescence (Figure 15). Since egl-4 is downstream of daf-7 in satiety 

signaling and daf-7 is expressed in ASI, we also tested whether expressing egl-4 in ASI 

under the gpa-4 promoter (97) rescues egl-4(lf) worms. We found that this gives a partial 

rescue, clearly enhanced from egl-4(lf), but not as well as either the tax-4 or endogenous 

promoter (Figure 15). We additionally tried to phenocopy the egl-4(gf) with transgenic 

expression of a constitutively active EGL-4 expressed under the tax-4 promoter. This  
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Figure 15. Restoring egl-4 expression rescues satiety quiescence.  

Wild-type worms were tested concurrently with matched transgenic (expressing egl-4 

under the indicated promoter) and nontransgenic siblings. 

Standard state probabilities of worms which were concurrently assayed with wild-type 

worms using TOBO. 

A. Restoring egl-4 under the endogenous promoter rescues quiescence back to wild-type 

levels. 

B. Restoring egl-4 under the tax-4 promoter (expressed in a dozen head neurons including 

ASI, (38))  rescues quiescence. 

C. Restoring egl-4 in ASI under the gpa-4 promoter (97) partially rescues quiescence.  

*p < 0.05, **p < 0.01 compared to wild-type, #p < .01, ##p < .01 compared to non-

transgenic by Mann-Whitney U-test. 
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resulted in significantly smaller body size (Figure 16A, B). To our surprise, this suppressed 

roaming but did not enhance satiety quiescence in nonfasted worms (Figure 16D). It did, 

however, enhance satiety quiescence after fasting and refeeding (Figure 16E).  

While egl-4 worms are impaired in satiety quiescence, they still respond to food 

quality and feeding history, two factors that are necessary for satiety quiescence. After 

fasting and refeeding, they show noticeably higher speed on poor quality food (Figure 17 

A, B). Looking at average speed, egl-4 worms showed increased locomotion both fasted-

refed and nonfasted on poor quality food and after fasting and refeeding on high quality 

food (Figure 17C). This indicates that there are other factors that convey hunger and 

nutrition signals independent from satiety signaling that are still functioning in the egl-4(lf) 

worm.  

 

2.8 ASI is activated by nutrition 

Under adverse conditions, C. elegans larvae can enter a developmental diapause 

known as the dauer larvae (82). Food (79), ASI (83), and DAF-7 (50) inhibit dauer 

formation. These facts, combined with our results , previously described effects on 

behavior (20,39), and the proximity of metabolic signaling genes egl-4 and daf-7 suggested 

that ASI might respond to the worm’s nutritional state to regulate satiety. We tested this 

prediction by calcium imaging. Calcium imaging uses a chimeric construct of GFP fused 

to calmodulin, which can be transgenically expressed in the cell of interest, in our case the  
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Figure 16. EGL-4 function for quiescence 

Worms expressing EGL-4CA in TAX-4 neurons have smaller body size and more 

quiescence than their non-transgenic siblings after fasting and refeeding, phenocopying 

egl-4(gf), as quantified by standard state probabilities. 

A. Representative picture of an adult transgenic worm.  

B. Representative picture of an adult nontransgenic worm. 

C. Quantification of body size by area. ***p < 0.001, by Student’s t test.  

D, E. Quiescence is enhanced in fasted-refed transgenic worms but not in nonfasted 

transgenic worms. Number of tracks analyzed shown to the right of the data. Mann-

Whitney U-test of percent time in quiescence for fasted-refed worms p = .104.  

Data was collected before implementing TOBO and so was not done concurrently. Wild-

type fasted-refed and nonfasted data is repeated from Figure 9. 
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Figure 17. egl-4 worms respond to nutritional state and food quality. 

A. A representative speed plot of a fasted and refed egl-4 mutant worm on high quality 

food. 

B. A representative speed plot of a fasted and refed egl-4 mutant worm on low quality 

food. 

C. The mean speeds of egl-4 mutants under different conditions: F-RF HQ: fasted and 

refed high quality food, NF HQ: non-fasted and fed high quality food. F-RF LQ: fasted and 

refed low quality food. Fasted and refed high quality food of egl-4(lf) was duplicated from 

Figure 1. Following Kruskal-Wallis ANOVA (P < 0.001), *p < 0.05. ***p < 0.001, by 

Mann-Whitney U-test. 
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ASI neuron (98) and the ‘olfactory chip’ to flow a stimulus across the nose of the worm 

(99). Worms stimulated with either bacteria grown in minimal media or the nutrient rich 

solution Luria Broth (LB) showed a clear activation of the ASI neuron (Figure 18A, B). 

Stimulating worms with either minimal media alone or washed bacteria did not show 

activation of the ASI neuron (Figure 18C and data not shown). Since cGMP is signaling in 

ASI to promote satiety quiescence and ASI responds to the nutritional content of worms’ 

environment, we also tested whether cGMP can activate ASI. We found that ASI is 

activated by 1 mM of the stable analog 8-Br-cGMP but that this activation is weaker and 

less consistent than the response to food or LB (Figure 18D).  

2.9 Additional satiety signaling 

While our main interest has been further investigating the TGFβ-cGMP pathway 

that is conveying satiety signaling, we have tested additional candidates hypothesized to 

play a role in satiety quiescence by our group and collaborators. One signaling group of 

particular interest is endocannabinoid signaling. Endocannabinoids are well known to play 

a role in gut-brain signaling and regulation of food intake (100–103). Importantly, a form 

of endocannabinoid signaling. N-acylethanolamines (NAEs), has recently been discovered 

in C. elegans playing a role in metabolic regulation, specifically in the dauer decision 

(104).  
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Figure 18. ASI responds to nutrition. 

F-G. Ca
2+

 imaging from ASI neurons. GCaMP2.2 was expressed in ASI under the gpa-4 

promoter (97). One or both ASIs were imaged as either M9 buffer or an experimental 

stimulus flowed past the tip of the head, where the ASI sensory endings are located. The 

stimulus was presented from 15–30 seconds and again from 45–60 seconds. Individual 

traces, normalized so that the mean for the first 15 seconds (before presentation of 

stimulus) is 1, are shown in color (f is fluorescence, f0 baseline fluorescence; the ratio is 

f/f0.). The dark black line is the mean of the normalized traces. 

A. Worms stimulated with HB101 strain E. coli grown in minimal media. 

B. Worms stimulated with Luria Broth. 

C. Worms stimulated with minimal media alone. 

D. Worms stimulated with 1 mM 8-Br-cGMP. 
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While a homolog of the cannabinoid-1 (CB1) receptor has not been found in 

worms, its inhibitor AM251 has metabolic effects in worms (Dr. Matthew Gill, personal 

communication). We tested whether AM251 either enhances satiety quiescence under 

conditions where worms spend little time in quiescence or whether it suppresses 

quiescence under conditions where it is enhanced. We found that in both the nonfasted and 

fasted-refed conditions there was little effect on time the worm spends in quiescence, but 

that treatment with the inhibitor caused worms to spend more time roaming at the expense 

of dwelling (Figure 19A, B). NAEs are synthesized by N-acyl-phosphatidylethanolamine-

specific phospholipase D and degraded by fatty acid amide hydrolase, of which C. elegans 

have two and six genes respectively (104). Since no loss-of-function mutations of the 

synthesis enzymes have been isolated, we tested transgenic worms over expressing each 

one and both together. We also tested these overexpressers in the background of faah-1 

mutation, one of the enzymes that degrade NAEs. However we saw no impairment of 

satiety quiescence after fasting and refeeding or enhancement of quiescence in nonfasted 

worms (Figure 20A, B). This does not completely rule out NAEs playing a role in 

quiescence. There may be redundant function with the other five fatty acid amide 

hydrolase enzymes and NAEs are highest at the L2 stage and so we might not see as strong 

of a phenotype in mutant and transgenic worms at the adult stage.  

Another group of signaling genes that were of particular interest is neuropeptides. 

Neuropeptides play a clear role in feeding behavior and worms that lack neuropeptide 

signaling are quiescence defective (20). We tested worms with feeding impaired ability to 

feed, eat-1 and eat-2 mutants. Both have been reported to have feeding defects and the 



www.manaraa.com

68 

 



www.manaraa.com

69 

Figure 19. CB1 receptor inhibitor treatment increases roaming behavior. 

Worms were treated for 3 hours on plates treated with either DMSO or the cannabinoid 1 

receptor inhibitor AM251 (5 µM). Number of tracks analyzed for each condition shown to 

the right of the data. Standard state probabilities of worms which were concurrently 

assayed with wild-type worms using TOBO. 

A, B. Both nonfasted and fasted-refed worms treated with AM251 show enhanced roaming 

but no significant change in quiescence.  
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Figure 19. Endocannabinoid signaling regulation of satiety quiescence 

Worms overexpressing the NAE synthesis enzymes nape-1, nape-2 or both were tested for 

quiescence. Worms with a mutation in one of the enzymes that degrades NAEs, faah-1, 

were also tested. The overexpressing strains were also tested in the mutant background. 

Number of tracks analyzed for each condition shown to the right of the data. Standard state 

probabilities of worms which were concurrently assayed with wild-type worms using 

TOBO. 

A. In the well-fed condition worms overexpressing either nape-1, nape-2, or both did not 

show a change in satiety quiescence levels. Expressing either nape-1 or nape-2 in the faah-

1 background likewise did not change satiety quiescence levels.  

B. After fasting and full refeeding worms overexpressing either nape-1, nape-2, or both 

did not show a change in satiety quiescence levels. Expressing either nape-1 or nape-2 in 

the faah-1 background likewise did not change satiety quiescence levels. 
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latter of which our group had previously reported to be quiescence defective (20,105–107). 

We found that eat-2 worms have decreased quiescence and increased roaming in both 

nonfasted and fasted-refed conditions (Figure 21A, B). As we expected, eat-1 worms show 

a similar decrease in satiety quiescence after fasting and refeeding (Figure 21B). Curiously, 

however, nonfasted eat-1 worms show an increase in both quiescence and roaming (Figure 

21A).  

Our lab had previously done a microarray analysis to find genes whose expression 

changed with fasting and after refeeding. We tested a selection of neuropeptide mutants 

that had shown significant changes in expression, nlp-2, nlp-22, ins-7, and ins-33. 

However, after fasting and refeeding we saw no significant differences in satiety 

quiescence in any of these mutants (Figure 22).  

Along with neuropeptides, we are interested in ways that neurons can be 

communicating satiety signaling. Multidrug resistance proteins (MRPs) transport 

molecules through the cell membrane and are highly conserved between worms and 

humans with homologs of all eight families of MRPs (108). We hypothesized that MRPs 

might transport molecules such as cGMP either into or out of cells which will then affect 

satiety signaling. Interestingly, we found that mrp-2 mutant worms showed higher levels of 

quiescence than wild-type worms in the nonfasted condition (Figure 23A, B).  

We also investigated a signaling pathway downstream of daf-7, glr-1. GLR-1 is an 

ionotropic glutamate receptor that has previously been shown to play a role in neuronal 

control of locomotion (109) that has previously been studied in regulating daf-7 

phenotypes (94). However, we saw no change in behavioral state in either glr-1 worms 
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compared to wild-type or in daf-7 glr-1 worms compared to daf-7 worms both fasted and 

refed as well as nonfasted (Figure 24A, B). 
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Figure 21. Worms with feeding defects show altered quiescence behavior. 

eat-1 and eat-2 mutants were tested both nonfasted and after fasting and full refeeding. We 

previously reported that eat-2 worms be quiescence defective after fasting and refeeding 

(20). Number of tracks analyzed for each condition shown to the right of the data. Standard 

state probabilities of worms which were concurrently assayed with wild-type worms using 

TOBO. 

A. Nonfasted eat-2 worms show less quiescence and more roaming as we had expected. 

Curiously, eat-1 worms showed both increased roaming and quiescence.  

B. After fasting and refeeding both eat-1 and eat-2 worms both show more roaming and 

less quiescence.  

*p < 0.05, **p < 0.01, ***p < 0.001 compared to wild-type by Mann-Whitney U-test. 
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Figure 22. Selected neuropeptide mutants show no change in quiescence. 

Number of tracks analyzed for each condition shown to the right of the data. Standard state 

probabilities of worms which were concurrently assayed with wild-type worms using 

TOBO. 

A, B. nlp-2, nlp-22, ins-7, and ins-33 mutant worms show no significant difference in 

percent time quiescent either nonfasted or after fasting and refeeding.  
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Figure 23. Multidrug resistant protein genes may play a role in conveying satiety 

signals. 

Number of tracks analyzed for each condition shown to the right of the data. Standard state 

probabilities of worms which were concurrently assayed with wild-type worms using 

TOBO.  

A. Nonfasted mrp-2 worms show increased satiety quiescence and mrp-6 worms show 

decreased satiety quiescence while mrp-3, mrp-4, and mrp-8 show no change in satiety 

quiescence.  

B. None of the worms with mutations in MRP genes showed a significant change in satiety 

quiescence after fasting and refeeding. 

**p < 0.01 compared to wild-type by Mann-Whitney U-test.
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Figure 23. glr-1 has no effect on quiescence.  

A. Nonfasted glr-1 worms show no significant change in behavior either in the wild-type 

background or in the daf-7 background.  

B. Nonfasted glr-1 worms show no significant change in behavior either in the wild-type 

background or in the daf-7 background. 

Number of tracks analyzed for each condition shown to the right of the data. Standard state 

probabilities of worms which were concurrently assayed with wild-type worms using 

TOBO.  

**p < 0.01, ***p < 0.001 compared to wild-type by Mann-Whitney U-test. 
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3. Conclusions and future directions 

Throughout human evolutionary history food has mostly been scarce. However, 

today we find ourselves in a novel environment where food is readily available and the 

energy required for day to day survival is minimal. This has caused a dramatic increase in 

the prevalence of obesity and its secondary health conditions, leading to decreased life 

quality and span as well as placing a significant burden on the healthcare system. Part of 

the obesity epidemic can be attributed to overeating- consuming more calories than day to 

day activity requires, the excess of which is stored as fat. We have found a worm behavior 

that mimics aspects of post prandial sleep in mammals and are investigating the signaling 

that enhances and disturbs this behavior in an effort to better understand the interactions of 

the molecules we have discovered so far and to uncover more genes signaling to convey 

this behavior, which are likely to have evolutionarily conserved homologs playing similar 

roles in mammals.  

Behavior is a result of neuronal wiring and cellular signaling that conveys a 

response to an animal’s environment, nutritional state, and external stimuli. C. elegans 

have a comparatively simple neuronal wiring with only 302 neurons. We have worked to 

develop tools that allow better analysis of worm behavioral state so that we may better 

investigate the neuronal connectivity and signaling pathways that are responsible for the 

cessation of food intake. The work presented here combines this locomotion tracking and 

HMM analysis with additional genetic and cell biology approaches to better understand 

satiety signaling.  
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Satiety quiescence is the complete cessation of locomotion and feeding. Why is this 

advantageous? Evolutionarily, why would this behavior arise? Would worms in satiety 

quiescence be more vulnerable to predators and consume less food? In beginning to 

address these questions about worms, we can first ask them about ourselves. If food is so 

critical to our survival, why do we have mechanisms that tell us to stop eating? Why do we 

go into a resting and fasting state that makes us more vulnerable to predation? Two 

answers come to mind to answer these questions.  

First, satiety quiescence could be a means of maximizing the efficiency of using the 

resources available. This coincides with a switch from a state of energy stress when the 

worm was depleting its stored energy to storing energy and producing progeny. The 

intestine of the worm experiences a pressure from the food in balanced with the waste out. 

When a worm is continuously feeding, the worm must continuously be expelling waste. If 

the worm stops feeding, it can more fully utilize the nutrients it has already taken in. 

Cessation of locomotion does expose an animal to increased risk of predation. However, 

this is not a comatose like state; worms are easily disturbed from quiescence and sensing a 

predator such as a larger nematode or mites would likely alter the behavior as a roar from a 

lion would alter the behavior of a human. Additionally, this risk is balanced by the benefit 

of maximizing its speed in having its offspring and laying those offspring on a high quality 

food source, which is essential for an animal whose reproductive strategy is to quickly 

have large numbers of progeny.  

Second, while we do not know why we need sleep, it has been found to be 

important both metabolically and neurobiologically. Cessation of feeding and locomotion 
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in sleep or sleep-like behavior is a common phenomenon across many phyla. While worms 

lack the central nervous system required to define sleep, quiescence is at least very similar 

to mammalian sleep. Developmentally, worms become quiescent just before molting in a 

behavior that has been termed lethargus, which may be important in the metabolism of 

development. After feeding, mammals and birds go through a behavioral satiety sequence 

which ends with the animal sleeping. 

An additional question to consider is what determines the basal level of 

quiescence? If this is a behavior to maximize the use of resources available, would high 

levels of quiescence be expected under normal growth conditions? One factor to consider 

is the need for dispersal. A worm growing in optimal conditions likely has hundreds to 

thousands of other worms growing along with it. Eventually the food source will run out 

and the evolutionary success of an animal is going to depend on the population’s ability to 

disperse and find new food. Testing the ideas put forward here are challenging but 

intriguing. We assay worms one per plate, but these ideas would predict that conditioning 

plates with media from high numbers of C. elegans would suppress quiescence in 

nonfasted worms. Additionally, we would predict that refeeding worms on plates 

conditioned with media from a predatory nematode such as Pristionchus pacificus should 

disturb worm behavior. On the other hand, these ideas predict that placing a single egg on 

a plate and allowing a worm to grow in isolation should enhance quiescence as a worm 

tries to maximize its growth rate to produce progeny more quickly. This would also predict 

that if a worm is uncertain about its nutritional environment, it should attempt to increase 

its efficiency and so enhance quiescence. We have plans to test this idea by using worms 
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that have experienced starvation at various points in its development and assay satiety 

quiescence both fasted-refed as well as nonfasted.  

Since our group’s discovery of the satiety quiescence behavioral state, further 

investigation into the signaling that controls it has been difficult because the worms are 

easily disturbed from it under observation and the assay provides information limited to 

whether the worm is in quiescence when observed and if so what the duration of 

quiescence is. We have attempted to overcome these challenges by developing an 

automated system to record and track worms over long periods of time. Our locomotion 

tracking system finds distinct periods of inactivity that are consistent with satiety 

quiescence behavior. To quantify behavior over time we have used a Hidden Markov 

model analysis. We expected that this would find clusters of worm behavior corresponding 

to roaming, dwelling, and quiescence in state-space. However, while it appears that there 

are times where worms placed in specific conditions show “pure” behavioral state (i.e. 

straight high speed movement in roaming, short back and forth movements in dwelling, 

and completely unmoving in quiescence), over the timecourse of our recordings of 

numerous conditions and genotypes there is no clear grouping of clusters corresponding to 

these behavioral states. Instead, worm behavior appears to form a continuum in state-

space. This suggests that worms are able to modulate their behavior more than simple 

switches between inactive, browsing, and exploratory modes.  

While it is a simplification of worm behavior, we are able to assign behavioral 

states on a probabilistic basis over time from the locomotion data. Although this automated 

system does not find satiety quiescence levels as high as when worms are measured by 
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hand and eye, as we had previously done, it is sufficiently robust to repeat findings made 

by hand and eye and extend these to allow us to move our investigation of satiety 

quiescence forward.   

It has been shown that a cGMP pathway regulates locomotive activity related to 

nutritional status (20,38,42,69,110). Our new automated monitoring system confirmed that 

egl-4 is absolutely required for satiety quiescence; we did not detect inactive locomotive 

periods in egl-4 mutants. Increased function of EGL-4 in ASI by a gain of function 

mutation enhances satiety quiescence, suggesting egl-4 function in ASI. However, egl-4 is 

required in other cells than ASI because expressing egl-4 only in ASI did not fully rescue 

the egl-4 mutant defect in satiety quiescence. This suggests that there are action sites other 

than ASI for EGL-4 to regulate satiety quiescence. Interestingly, an egl-4 mutant can still 

respond to the changes in nutritional status, such as difference in food quality. Because 

egl-4 mutants are completely incapable of showing satiety, this ability suggests that the 

increase of locomotion by low food quality can be caused by another signal likely coming 

from hunger. Our low quality food in fact made worms appear starved. It is interesting to 

speculate that the whole range of locomotive activity can be controlled by the integration 

of two types of signals: one to sense fullness and the other to sense hunger. 

We found that cGMP signals upstream of TGFβ to increase the levels of the ligand 

DAF-7 in fasted worms. Treating fasted worms with 1 mM 8-Br-cGMP increases DAF-7 

levels to a similar degree as refeeding worms on high quality food. This occurs in the ASI 

neuron, which we and others have shown to be a major center of integration of signals that 

convey the nutritional state of the worm. We have added to this the information that the 
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ASI neuron is activated by the nutritional content of the worm’s environment, meaning 

that the ASI neuron is sensing both the internal and external nutritional state of the worm.  

How ASI integrates this short term (almost instantaneous) activation with a more 

long term (on the order of three hours) genetic program is still unknown. Our calcium 

imaging studies were done on well-fed worms, but the worms are food deprived for the 

time that it takes to load them into the microfluidic device, which is about five minutes. 

Activation of ASI could play a role in telling the worm to remain on food by starting to 

synthesize and/or release signals conveying that it is in a good environment. One such 

signal is cGMP. We plan to test the hypothesis that food stimulates an increase in cGMP 

levels in several ways. First, we will directly test whether cGMP levels increase using a 

cGMP reporter construct similar to GCaMP (60). This will tell us whether stimulation with 

food causes a change in cGMP levels on the same timescale as the calcium transient that 

we see. If we do see an increase, we will test both calcium and cGMP levels of worms with 

each tax-4 and daf-11 mutations. tax-4 forms a heterodimer with tax-2 to make a cGMP 

gated cation channel. daf-11 is a membrane bound guanylyl cyclase. We are unable to test 

tax-4 mutants for satiety quiescence because the worms do not stay on food and so we 

cannot observe them. daf-11 mutants have deficient satiety quiescence, but are rescued by 

expressing the gene in the ASI neuron. Loss of cGMP or calcium transient in either the 

daf-11 or tax-4 background in response to stimulating the worm with food would suggest 

activation of daf-11  increased cGMP levels  activation of tax-2/tax-4 channels as the 

pathway of how ASI is activated. Interestingly, this is the same pathway of activation 

proposed independently by a group studying the ASEL neuron mediating worm response 
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to pH levels, the only difference being that the guanylyl cyclase is gcy-14 rather than daf-

11 (61). If our hypothesis holds, this suggests that this activation pathway could have 

developed evolutionarily specialized in individual worm neurons to respond to specific 

stimuli.  

The question still remains of how ASI integrates this short term activation with 

long term induction of satiety quiescence. Looking into this question, there are two 

important pieces of information to consider. First, our studies of ASI activation simply 

looked at whether the neuron was activated acutely in response to a stimulus. What the 

neuron’s pattern of activation looks like with continuous stimulation over time would be 

very valuable data to provide insight on its role in inducing quiescence. Second, satiety 

quiescence signaling must originate from the gut, meaning that activation of ASI is not 

sufficient for quiescence signaling. We can acquire information on the pattern of activation 

of ASI under continuous stimulation to provide more information on its signaling. Ideally 

this would be done in freely moving worms to correlate worm locomotion with neuronal 

activity. However, there are two technical challenges to accomplishing this. First, this 

approach would require a mechanical stage moving to keep the worm in a small field of 

view which is likely to disturb worm behavior. Second, continuous stimulation with 

fluorescent light disturbs worm behavior. This has been countered by using worms with 

loss of function lite-1, but this comes with additional caveats of the lite-1 mutation 

possibly having an effect on worm behavior.  

Upstream of the satiety quiescence signaling in ASI, we know that a signal that 

originates in the intestine is required. What this signal is and how it causes a response in 
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ASI we do not yet know. The fact that the signal originates in the intestine was established 

from the findings that worms that have pumping defects, and so are less able to intake 

food, and worms that have a microvillus-specific actin mutation, and so are less able to 

absorb nutrients, have deficient satiety quiescence. In mammals, much of the integration of 

appetite control between the intestine, liver, and adipose tissue is done by endocrine 

factors. Since worms lack major endocrine signaling molecules such as leptin, this might 

not be conveyed in the same way. We have several ideas and candidate approaches that 

could address what this signal might be. First, it could be transport of a secondary 

messenger such as cGMP across the intestine into the pseudocoelom, where it could reach 

the ASI neuron. We have attempted to address this by testing worms with mutations in 

multidrug resistant proteins. If we find genes that affect satiety quiescence, we will restore 

expression in the intestine and/or the ASI neuron to rescue quiescence to verify that this is 

where they are acting. It could be that nutrients, either a component of the bacteria or 

metabolized product, enters the pseudocoelom by diffusion through the intestine. If this is 

the case, a genetic approach would be difficult and a more biochemical approach would 

work better. Supplementing the NGM plate with various nutritional factors such as sugars, 

amino acids, or fatty acids would provide insight as to what triggers the communication 

from the intestine to ASI. Another interesting possibility comes from investigation into the 

innate immunity system. A recent report of communication between the intestine and 

nervous system in response to pathogenic bacteria implicated the insulin signaling system 

in canonical daf-2  daf-16 signaling (111). While we have avoided the crowded insulin 

signaling field in favor of more novel signaling pathways, the fact that daf-2 is upstream of 
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egl-4 in satiety signaling could be an indication that an insulin like peptide might be 

released from the intestine to communicate to ASI. In general, neuropeptides with reported 

expression in intestine are a great candidate pool to find what is initiating satiety signaling.  

Downstream of ASI, we have shown that restoring the TGFβ receptor daf-1 in the 

RIM and RIC neurons rescues the quiescence defect of daf-1 mutant worms. This means 

that cGMP is signaling to activate the canonical TGFβ pathway, which connects ASI  

RIM + RIC. Ablation of these neurons in daf-1 mutant worms rescues as well, pointing to 

daf-7  daf-1 signaling causing an inhibition of these neurons. We propose a model by 

which food signal activates ASI, causing daf-11 to synthesize cGMP, which then activates 

EGL-4 and increases DAF-7 levels. DAF-7 is released from ASI and binds to its receptors 

DAF-1 and DAF-4 to inhibit synthesis of a hunger signal (Figure 25A). In terms of 

behavioral state, we propose that ASI promotes the switch from dwelling to quiescence 

and inhibits the switch from quiescence to dwelling. RIM and RIC do the opposite, 

promoting the switch from quiescence to dwelling and inhibiting the switch from dwelling 

to quiescence. This dynamic is modulated by the ability of ASI to suppress RIM and RIC 

activity via TGFβ signaling (Figure 25B).  

What specifically RIM and RIC are doing and what is downstream of these neurons 

we do not know. We hypothesized that octopamine, the invertebrate equivalent of 

noradrenaline which is synthesized in RIM and RIC, is the hunger signal but exogenous 

octopamine treatment did not suppress satiety quiescence. We plan to perform calcium 

imaging in these neurons to verify that their activity is suppressed under conditions where 

satiety quiescence is enhanced.  
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Figure 25. Proposed model of satiety quiescence signaling of cGMP and TGFβ in  

ASI  RIM + RIC. 

A. Signaling pathway. Food signal stimulates DAF-11 to increase cGMP levels in ASI, 

which then acts on its two known targets, the cyclic nucleotide gated channel formed by 

TAX-2 and TAX-4 and the cyclic GMP dependent protein kinase EGL-4. Downstream of 

cGMP, DAF-7 levels are increased and it is and released from ASI, where it binds to its 

receptors DAF-1 and DAF-4 on RIM and RIC. This inactivates a hunger signal 

synthesized by these neurons.  

B. Behavioral dynamic. ASI promotes the switch from Dwelling to Quiescence and 

inhibits the switch from Quiescence to Dwelling. RIM and RIC does the opposite, 

promoting the switch from Quiescence to Dwelling and inhibiting the switch from 

Dwelling to Quiescence. ASI is able to modulate this dynamic by synthesizing and 

releasing the TGFβ ligand DAF-7 to inactivate RIM and RIC.  
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In finding what is downstream of RIM and RIC, there are two approaches: what 

cell(s) they are communicating to and what molecule(s) are being used for this signal. For 

the first approach, a starting place is what synapses RIM and RIC form. Since the neuronal 

connectivity is known, this is a straightforward task to ablate these neurons and see 

whether satiety quiescence is enhanced. However, if the signal produced by RIM and RIC 

is released then these are not likely to be the target and the cell(s) that receive the signal 

would not be predictable from this information (just as the ASI  RIM + RIC connection 

is not predicted by neuronal connectivity). If this is the case, then returning to egl-4 

signaling is a possible route. We know that egl-4 is signaling downstream of daf-7 and so 

finding what cell(s) egl-4 is acting in would reveal additional pieces of the satiety 

quiescence signaling puzzle. This could be accomplished by expressing constitutively 

active egl-4 (egl-4CA) under neuron specific promoters in a daf-7 or daf-1 background. 

We would first have to verify that expressing egl-4CA in ASI does not enhance satiety 

quiescence, as our model predicts. First, we would express egl-4CA in RIM and RIC to 

answer the simple question of whether egl-4 is acting on both sides of the daf-7 ASI  

daf-1 RIM + RIC connection. If that is unsuccessful, we would target individual head 

neurons for egl-4CA expression. If this approach is successful, we will have identified a 

neuron downstream of RIM and RIC, allowing us to examine genes expressed in RIM and 

RIC that are likely to be released and have a receptor on the target cell. If this approach is 

unsuccessful, we can attempt a forward genetic screen. First, we would verify that the 

signaling in RIM and RIC is canonical TGFβ with daf-7  daf-1   daf-8 + daf-14 ┤daf-

3 + daf-5. daf-3 and daf-5 repress gene transcription and mutants of daf-3 and daf-5 should 
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act as constitutively active daf-1 and so should show either normal or enhanced satiety 

quiescence. A forward genetic screen in daf-3 or daf-5 mutants looking either specifically 

for satiety quiescence or indirectly for increased feeding and fat storage (daf-3 and daf-5 

mutants rescue the increased feeding and fat storage of daf-1 and daf-7 worms) would 

identify genes downstream of the TGFβ pathway, possibly identifying the hunger signal 

produced by RIM and RIC. We would expect that loss of function egl-4 would cause this 

effect and so any hits isolated from this screen would need to be complementation tested 

with egl-4.  

In addition to the cGMP-TGFβ signaling axis, we have looked at a few other 

signaling pathways for potential effects on satiety quiescence. Some, such as glr-1, have 

no effect but do serve to give us further confidence in our system that we can identify 

genes specifically affecting satiety quiescence by locomotion and rule out genes that do not 

play a role. Most interestingly among signaling groups we have tested is endocannabinoid 

signaling. While this is a collaboration between our lab and Dr. Matthew Gill, who is 

investigating numerous aspects of the biology, we are very interested in how this affects 

satiety quiescence. Stimulation of the CB1 receptor increases appetite and food intake and 

so blocking the receptor should have the opposite effect. Treating worms with the 

mammalian CB1 receptor antagonist AM251 has a clear effect on behavior, increasing 

locomotion by increasing percent time roaming in both fasted and nonfasted animals. 

However, there is no known worm homolog of the mammalian CB1 receptor, so we cannot 

perform the proper control of using receptor knockout animals and demonstrating that we 

lose the effect. This also makes it very difficult to find whether endocannabinoid signaling 
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interacts with the cGMP-TGFβ signaling axis and if so in what cell(s) without knowing the 

target of the antagonist. Identifying the target of AM251 in worms is currently being 

pursued by Dr. Gill’s lab. Additionally, worms with NAE synthesis genes nape-1 and 

nape-2 overexpressed show some effects on satiety quiescence but we do not yet have 

worms with these genes knocked out, which is also currently being undertaken by the Gill 

lab. Altogether, this makes pursuing this line of research difficult to separate specific 

satiety quiescence signals from what might be a general avoidance response to a 

potentially noxious or harsh stimulus.  

A few experiments that could begin to outline the interactions between these two 

signaling groups would be to test worms with enhanced and suppressed quiescence, egl-

4(gf) and egl-4(lf) respectively, both fasted-refed and nonfasted with the inhibitor. If 

AM251 does not further enhance roaming in egl-4(lf) worms and does not suppress 

quiescence in egl-4(gf) worms, then NAE signaling could potentially be placed upstream 

of egl-4. If this is the case, it is a very good starting point because Dr. Gill’s lab is 

investigating NAE signaling interacting with the daf-2 pathway, which is upstream of egl-

4. If this is not the case, if egl-4(lf) worms show increased roaming and egl-4(gf) worms 

show decreased quiescence it could mean that endocannabinoid signaling is acting parallel 

or downstream of egl-4 affecting locomotion or that some quality of the drug is having a 

general aversive response. This could be answered by exogenous treatment of NAEs, 

which should have the opposite effect.  

All together, we have developed a highly quantitative system to assay worm 

behavioral state over extended periods of time. We have used this system to further 
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investigate satiety quiescence signaling, finding additional components and interactions of 

the cGMP-TGFβ signaling axis as well as begin to investigate other candidate pathways. 

We have established the ASI neuron as a major center of integration of nutritional 

information, finding an additional level of regulation of TGFβ by cGMP as well as 

showing EGL-4 conveying satiety signaling in the neuron. Further, we have shown that 

ASI directly responds to the nutritional content of the worm’s environment by activating in 

response to food. We then found that the TGFβ ligand synthesized in ASI acts by binding 

its receptor on the RIM and RIC interneurons to convey satiety signaling. The work 

presented here and the work that is currently ongoing helps us to better understand the 

evolutionarily conserved genetic signaling that governs appetite control.  
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4. Materials and Methods 

Strains and culture conditions 

Worms were cultured and handled as described previously (112) with the following 

modifications: worms were routinely grown on NGMSR plates (105). All worms were 

maintained at 20 
o
C on E. coli strain HB101 unless indicated otherwise. The wild-type 

strain was C. elegans variant Bristol, strain N2. Mutant strains used were FK234 egl-

4(ks62) IV, DA521 egl-4(ad450sd) IV, CB1372 daf-7(e1372ts) III, CB1393 daf-8(e1393ts) 

I, DR40 daf-1(m40ts) IV, KQ380 daf-1(m40ts) IV; ftEx205[ptdc-1::daf-1-gfp odr-

1::dsRed], DA2316 daf-1(ad2316) IV, DA2318 daf-1(ad2316) IV; ftEx205[ptdc-1::daf-1-

gfp odr-1::dsRed], DA2228 adEx2228[gpa-4p::egl-4CA rol-6p::GFP], DA2225 

adEx2225[tax-4p::egl-4CA rol-6p::GFP], DA2233 egl-4(ks62) IV; adEx2233[gpa-

4p::egl-4 rol-6::GFP], DA2145 egl-4(ks62) IV; adEx2145[tax-4::egl-4 rol-6::GFP], 

DA2221 daf-11(sa195ts) V; adEx2221[gpa-4p::daf-11 rol-6p::GFP], DA2258 daf-

7(e1372ts) III; adEx2258[tax-4p::egl-4gf rol-6p::GFP], DA2258 daf-7(e1372ts) III; 

adEx2258[tax-4p::egl-4gf rol-6p::GFP], DA2313 tdc-1(ok914) II; daf-7(e1372ts) III, 

DR47 daf-11(m47) V, DA2318 daf-1(ad2316) IV; ftEx205[ptdc-1::daf-1-gfp odr-

1::dsRED], DA2230 adEx2230[gpa-4p::egl-4(gf) rol-6p::GFP] KQ280 daf-1(m40ts) IV; 

ftEx98[pdaf-1::daf-1-gfp odr-1::dsRED], KQ324 daf-1(m40ts) IV; 

ftEx175[pB0280.7::daf-1-gfp odr-1::dsRED], KQ275 daf-1(m40ts) IV; ftEx93[pglr-1::daf-

1-gfp odr-1::dsRED], KQ251 daf-1(m40ts) IV; ftEx69[pegl-3::daf-1-gfp odr-1::dsRED], 

KQ265 daf-1(m40ts) IV; ftEx83[posm-6::daf-1-gfp odr-1::dsRED], KQ315 daf-1(m40ts) 
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IV; ftEx166[pflp-1::daf-1-gfp odr-1::dsRED], KQ380 daf-1(m40ts) IV; ftEx205[ptdc-

1::daf-1-gfp odr-1::dsRED], KQ332 daf-1(m40ts) IV; ftEx183[pglr-7::daf-1-gfp odr-

1::dsRED], PY7505 (Beverly et al., 2011), DA2227 adEx2227[gpa-4p::GFP],  

 

Locomotion analysis 

5 ml LB was inoculated with a single colony of E. coli strain HB101 expressing 

mCherry and incubated shaking overnight at 37 °C. The culture was removed from the 

incubator and allowed to sit at room temperature overnight. The sample was centrifuged at 

4,000 RPM for 3 minutes. After decanting the supernatant, the pellet was resuspended in 

the small residual amount of broth and transferred to a microcentrifuge tube. 40 µl of this 

suspension was twice serially diluted 1:1 with M9 (for a final 4× dilution). 5 µL of this 

suspension was pipetted onto a 35 mm NGMSR plate and allowed to dry completely. 

Aztreonam was used to prepare low-quality food (39). Aztreonam prevents 

bacterial cell division, so that the bacteria turn into long snakes, which are difficult for the 

worm to swallow. Aztreonam-treated bacteria were prepared as above with one additional 

step. After shaking overnight at 37 °C, 1 ml of turbid LB was added to 4 ml fresh LB and 

aztreonam (Sigma-Aldrich) was added to a final concentration of 5 µg/ml. This was 

incubated overnight shaking at 37 °C, and then allowed to sit at room temperature 

overnight. For assays with aztreonam not incubated, bacteria were prepared the same as 

non-treated bacteria except for aztreonam being added to a final concentration of 5 µg/ml 

immediately before being centrifuged. 



www.manaraa.com

99 

 L4 worms were picked to a fresh NGMSR plate and given 8 hours to develop to 

young adult stage. Young adult worms (adults containing no eggs) were picked to 

individual 60 mm NGMSR plates without food and starved for 12-14 hours. A single 

starved worm was then transferred to an approximately 6 mm diameter spot of bacteria 

made by placing 5 µl bacterial culture on a plate, focused under the camera, and allowed to 

refeed for 3 hours. The microscope light was then turned on and video capture was started 

at 1 frame/second for 1 hour. 

 For non-fasted assays, worms were prepared identically except that young adults 

were transferred to a 60 mm NGMSR plate with food for 12-14 hours and worms were 

given 30 minutes on the assay plate to recover from being transferred, followed by taking a 

30 minute video at 1 frame/second.  

 Initial worm recordings were performed using a Leica MZ6 microscope at 2.5× 

magnification with a 1.0× lens and a Retiga-4000R camera and Image Pro Plus 6.2. 

Locomotion videos were analyzed by Image Pro Plus software. Subsequent analyses using 

TOBO were recorded using Point Grey GRAS-14S5M-C digital cameras fitted with a 

Computar MLM3X-MP macro zoom lenses. Images were recorded using Point Grey’s 

freely available FlyCap2 software and worms were tracked using custom written program 

in MATLAB. A low pass filter was applied to each frame of the movie and the light/dark 

threshold was adjusted to find the outline of the worm. The center of mass was calculated 

at each time, reducing each recording to a series of  points, which were the basis for 

all subsequent analyses.  
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 A certain amount of motion is detected even from a completely stationary worm, as 

small fluctuations in measured brightness of border pixels cause them to vary above and 

below threshold. This noise motion places a limit on our ability to detect immobility and 

therefore quiescence. To quantify it, we recorded a worm immobilized with 30 µl of 1M 

sodium azide before transfer to the assay plate. The mean measured speed of an 

immobilized worm was 0.32 μm s
-1

, and the speed was below 1 μm s
-1

 99.7% of the time. 

Apparent motion was biased along one direction, as expected, since most border pixels are 

farther from the center in the anterior/posterior direction than in the dorsal/ventral 

direction. 

 

Unbiased closed-loop fits 

Given guesses of the behavioral states, an HMM fit can be performed on a track 

and new estimates calculated as described above (an open-loop fit, Figure 25A). Instead of 

stopping there, however, one can feed these new estimates into a second HMM fit of the 

same track to obtain a third set of estimates, and so on. Under favorable conditions the 

estimates will eventually stop changing. We call this a closed-loop fit (Figuer 25B). Some 

adjustments were necessary to achieve convergence in closed-loop fits. First, we do not use 

re-estimated transition probabilities, but constrain them to the form described above. 

Second, we do not allow the variance parameters to vary independently for the separate 

states, but instead calculate a single value for each of these as a weighted average of the 

estimates for the separate states.  



www.manaraa.com

101 



www.manaraa.com

102 

Figure 26. HMM fit scheme. 

A. Open loop fit. 

B. Closed loop fit. 

C. Unbiased closed loop fit.  
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Because of the form of the distribution we assumed, this ensured that the ratios of 

emission probabilities were bounded. After convergence, we run the states through a single 

round of open-loop fit with these constraints relaxed so as to estimate transition 

probabilities and independent variance parameters for each state. We also did a single step 

of the Baum-Welch algorithm (113) for estimating the symbol probability matrix for an 

HMM with discrete emissions. 

The closed-loop fit still requires initial guesses of state parameters to get started, 

and it is conceivable that these initial guesses might influence the states eventually 

discovered. In an unbiased closed-loop fit, initial guesses derived entirely from the data 

(Figure 25C). We began by fitting the data to a one-state model. In this case no initial 

guess is necessary, since the worm must be in the single state with probability 1 during the 

entire track. We then split the state into two, one identical to that derived from the one-

state fit, and a second with slightly greater mean speed, and used these as the initial 

estimates for a two-state closed-loop fit. Although the fit began with two almost identical 

states, the slightly higher-speed state has higher probability during portions of the track 

when the worm is moving faster and the lower-speed state when the worm is moving 

slower. If there are coherent behavioral variations, the low and high-speed states will 

therefore take on different characteristics on parameter re-estimation, and during 

subsequent iterations they converge on different parts of the track. If the two-state fit 

converged, its higher-speed state was split in the same way to produce initial guesses for a 

three-state fit. Goodness of fit, measured by likelihood, tended to increase with more 

states: log-likelihood per point increased by 0.34 ± 0.20 (mean ± standard deviation; range 
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0.013 – 1.14, p < 10
-60

, signed rank test) in going from one to two states, and 0.069 ± 0.065 

(range -0.016 – 0.35, p < 10
-59

). (In 18/363 cases likelihood decreased slightly in going 

from two to three states. It is not surprising that likelihood decreased slightly in some 

cases, since the unbiased parameter estimates (34,114), are not maximum likelihood 

estimates. The equal variance constraint can also prevent achieving maximum likelihood.) 

We didn’t try to continue past three states, since in most three-state fits there was at least 

one in which the worm spent little time. The fit with the highest excess entropy was used 

for further analysis. 

Although we refer to these fits an “unbiased”, we recognize that this description is 

relative. Any method of recognizing behavioral patterns will of course be biased by the 

data collected. More subtly, to use the method it is necessary to reduce possible patterns of 

behavior to numerical descriptions, as described above. There is no fixed recipe for 

developing such a description scheme, and it determines what sort of patterns can be 

recognized.  

 

Standard state descriptions and fits 

While unbiased closed-loop fits capture a lot of information about an individual 

worm’s movement, they are difficult to compare to published results. We therefore 

developed standard roaming, dwelling, and quiescence state descriptions that could be used 

for fitting all tracks. While these standard state fits probably do not classify behavior as 
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accurately as unbiased fits, they have the advantage of describing behavior in familiar 

terms.  

Based on past results, we identified pure plays—conditions under which a worm 

spends most of its time in one of the three states. These conditions were: 

 

Roaming: well-fed wild-type worms on poor food, well-fed egl-4 loss-of-function 

mutant worms on poor and medium-quality food. Poor food is E coli HB101 grown 

on aztreonam (39). Medium-quality is a mixture of aztreonam-treated and 

untreated. Poor food suppresses dwelling and quiescence, and egl-4 is necessary for 

both (20,29,38). 

Dwelling: well-fed ttx-3, tax-4, and daf-7 loss-of-function mutant worms on good food 

(E coli HB101); daf-7 loss-of-function mutant worms fasted for 12 hours, then 

refed for 3 hours on good food. Under our recording conditions well-fed worms 

show little quiescence on good food. ttx-3 and tax-4 are necessary for normal levels 

of roaming (29,39). daf-7 worms have been reported to be defective in both 

roaming  (39) and quiescence (20). 

Quiescence: egl-4 gain-of-function mutant worms fasted for 12 hours, then refed for 3 

hours on good food (20,42). 

 

Unfortunately, none of these is a perfect pure play. We therefore chose the most 

probable state from the unbiased closed-loop fit of each track as the basis for pure-play 

state descriptions. Two kinds of effects can be detected in standard state fits. First, a 
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treatment or genotype may affect the rate at which a worm switches between roaming, 

dwelling, and quiescence. Second, the treatment may affect the way a worm behaves when 

in a particular state. For instance, it has been suggested, and we confirmed, that roaming 

worms move faster on low-quality food (39)—this effect is in addition to the increase in 

the frequency of roaming. Interpretation of these fits is complicated by the fact that one 

effect can masquerade as the other. For instance, if in some genotypes dwelling worms 

behave in ways that are closer to quiescent worms, this may appear as an increase in the 

frequency of quiescence.  

Statistically typical tracks 

The short illustrative statistically typical segments in Figure 3 in were chosen as 

follows. First, the most probable states from unbiased closed-loop fits on which the 

corresponding standard state description was based (see above) were averaged to get the 

target state. Next, the state descriptions were standardized to have standard deviation 1, 

and that state and track that yielded a standardized description closest to the mean were 

chosen. Finally, the central 90 s from the longest segment within this track in which the 

probability of being in this state remained continuously at 	³ 99% was chosen.  

A complete description of the calculations and parameters of the HMM is available 

in our paper ‘The Geometry of Locomotive Behavioral States in C. elegans’ Gallagher et 

al. (2013) (45). 
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Software 

MATLAB and Mathematica scripts developed for this analysis are available at 

http://elegans.som.vcu.edu/~leon/HMM.  

 

Food Intake Assay 

Food intake were measured as previously described (20). Briefly, for the ‘fasted 

and refed’ test, worms were fasted for 12 hours and refed for 3 or 6 hours to examine 

satiety quiescence. Once worms were found to be quiescent, the duration was measured for 

10 worms then averaged. To measure food intake, mCherry-expressing E. coli strain 

HB101 was inoculated in LB and grown overnight at 37 °C, then seeded on 35 mm 

NGMSR agar plates and incubated overnight at 37 ºC. Plates were stored at room 

temperature for at least one night. Worms were fasted and refed as described (20). After 3 

hours of refeeding, worms were treated with 100 µl of 1 M sodium azide for their feeding 

status to be fixed. Worms were observed using a Zeiss Axio A2 Imager with a 10× 

objective lens. Images were acquired using Zeiss Axiovision software and fluorescence 

was quantified using ImageJ.   

 

Calcium Imaging 

 All calcium imaging experiments were performed on an Olympus BX51 upright 

microscope with a long-working-distance 40× water immersion objective and a 

Photometrics Evolve 128 EM-CCD camera. Analysis of the imaging data was performed 

http://elegans.som.vcu.edu/~leon/HMM
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with a custom Java-based program as in Suzuki et al. (115), with one region of interest 

placed on ASI and a second placed nearby to measure background.  

Young adult worms expressing the transgene were picked and placed in a 

microfluidic device that restrains the worm with the tip of the head (where the ASI sensory 

neurons are located) in a stream that can be rapidly switched ((99), "the olfactory chip"). 

Images were recorded at 100 frames/second for 60 seconds. Each worm was recorded for a 

15 second baseline, followed by exposure to stimulus for 15 seconds, 15 seconds no 

stimulus, and a second 15 second exposure to stimulus.  

 

DAF-7 Quantification 

 Worms expressing daf-7p::daf-7::mCherry were prepared the same as for fasted-

refed assays. HB101 was inoculated in LB and grown overnight at 37 °C, then seeded on 

35 mm NGMSR agar plates and incubated overnight at 37 ºC. Plates were stored at room 

temperature for at least one night. Worms were either fasted and refed or nonfasted as 

described above. For cGMP treatment, 8-Br-cGMP was added to plates to a final 

concentration of 1 mM and worms were placed on the plate with no food. After 3 hours of 

refeeding or cGMP treatment or 30 minutes of mock refeeding, worms were treated with 

100 µl of 1 M sodium azide for their feeding status to be fixed. Worms were observed 

using a Zeiss Axio A2 Imager with a 63X objective lens. Images were acquired using Zeiss 

Axiovision software and fluorescence was quantified using ImageJ.   
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Body Size Measurement 

 L4 stage worms were picked to a new plate on a lawn of HB101 bacteria. Worms 

were picked under fluorescence to sort transgenic and nontransgenic worms. The worms 

were grown at 20
 
°C for 24 hours (day one adults) or 48 hours (day two adults). To 

measure body size, worms were transferred to a plate with no bacteria and imaged using a 

Zeiss Discovery V8 microscope and a Point Grey RoHS 1.4MP B&W Grasshopper 1394b 

Camera at 7.5 frames/second. The area of each worm was calculated using a custom 

written MATLAB program. The area of the worm in seven consecutive frames was 

calculated and the result averaged. 

Statistics 

All bar graphs denote mean ± SEM. Statistical tests were done using MatLab, 

Mathematica, and R programming tools.  

 

 

 

 

 

 



www.manaraa.com

110 

Literature Cited 



www.manaraa.com

111 

 

 

Literature Cited 

1.  Ogden CL, Carroll MD. Prevalence of Overweight, Obesity, and Extreme Obesity 

Among Adults: United States, Trends 1960–1962 Through 2007–2008. Natl Heal Nutr 

Exam Surv [Internet]. 2010; Available from: 

http://www.cdc.gov/NCHS/data/hestat/obesity_adult_07_08/obesity_adult_07_08.pdf 

2.  Flegal KM CM. Prevalence and trends in obesity among us adults, 1999-2008. JAMA. 

2010 Jan 20;303(3):235–41.  

3.  NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, 

and Treatment of Obesity in Adults (US). Clinical Guidelines on the Identification, 

Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. 

Bethesda (MD): National Heart, Lung, and Blood Institute; 1998 Sep. Available from: 

http://www.ncbi.nlm.nih.gov/books/NBK2003/.  

4.  O’Rahilly S, Farooqi IS, Yeo GSH, Challis BG. Minireview: Human Obesity—

Lessons from Monogenic Disorders. Endocrinology. 2003 Sep 1;144(9):3757–64.  

5.  Friedman JM. A War on Obesity, Not the Obese. Science. 2003 Feb 7;299(5608):856–

8.  



www.manaraa.com

112 

6.  Comuzzie AG, Allison DB. The Search for Human Obesity Genes. Science. 1998 May 

29;280(5368):1374–7.  

7.  Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence That 

the Diabetes Gene Encodes the Leptin Receptor: Identification of a Mutation in the 

Leptin Receptor Gene in db/db Mice. Cell. 1996 Feb 9;84(3):491–5.  

8.  Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional 

cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec 

1;372(6505):425–32.  

9.  Mutch DM, Clément K. Unraveling the Genetics of Human Obesity. PLoS Genet. 

2006 Dec 29;2(12):e188.  

10.  Christopher G. Bell, Andrew J. Walley, Philippe Froguel. The genetics of human 

obesity. Nat Rev Genet. 2005;6(3):221–34.  

11.  Chambers AP, Sandoval DA, Seeley RJ. Integration of Satiety Signals by the Central 

Nervous System. Curr Biol CB. 2013 May 6;23(9):R379–R388.  

12.  Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system 

control of food intake. Nature. 2000 Apr 6;404(6778):661–71.  

13.  Antin J, Gibbs J, Holt J, Young RC, Smith GP. Cholecystokinin elicits the complete 

behavioral sequence of satiety in rats. J Comp Physiol Psychol. 1975 Sep;89(7):784–

90.  



www.manaraa.com

113 

14.  Ishii Y, Blundell JE, Halford JCG, Rodgers RJ. Palatability, food intake and the 

behavioural satiety sequence in male rats. Physiol Behav. 2003;80(1):37 – 47.  

15.  Halford JCG, Wanninayake SCD, Blundell JE. Behavioral Satiety Sequence (BSS) for 

the Diagnosis of Drug Action on Food Intake. Pharmacol Biochem Behav. 

1998;61(2):159 – 168.  

16.  Spudeit WA, Sulzbach NS, Bittencourt M de A, Duarte AMC, Liang H, Lino-de-

Oliveira C, et al. The behavioral satiety sequence in pigeons (Columba livia). 

Description and development of a method for quantitative analysis. Physiol Behav. 

2013;122(0):62 – 71.  

17.  Wren AM, Bloom SR. Gut Hormones and Appetite Control. Gastroenterology. 

2007;132(6):2116 – 2130.  

18.  Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat 

Rec. 1940;78(2):149–72.  

19.  Elmquist JK, Elias CF, Saper CB. From lesions to leptin: hypothalamic control of food 

intake and body weight. Neuron. 1999 Feb;22(2):221–32.  

20.  You Y, Kim J, Raizen DM, Avery L. Insulin, cGMP, and TGF-beta signals regulate 

food intake and quiescence in C. elegans: a model for satiety. Cell Metab. 2008 

Mar;7(3):249–57.  



www.manaraa.com

114 

21.  Johnen H, Lin S, Kuffner T, Brown DA, Tsai VW-W, Bauskin AR, et al. Tumor-

induced anorexia and weight loss are mediated by the TGF-[beta] superfamily cytokine 

MIC-1. Nat Med. 2007 Nov;13(11):1333–40.  

22.  Arora S, Anubhuti. Role of neuropeptides in appetite regulation and obesity – A 

review. Neuropeptides. 2006;40(6):375 – 401.  

23.  Valentino MA, Lin JE, Snook AE, Li P, Kim GW, Marszalowicz G, et al. A 

uroguanylin-GUCY2C endocrine axis regulates feeding in mice. J Clin Invest. 2011 

Sep 1;121(9):3578–88.  

24.  Jones KT, Ashrafi K. Caenorhabditis elegans as an emerging model for studying the 

basic biology of obesity. Dis Model Mech. 2009 May 1;2(5-6):224–9.  

25.  Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: Ancient 

energy gauge provides clues to modern understanding of metabolism. Cell Metab. 

2005;1(1):15 – 25.  

26.  Watts JL. Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends 

Endocrinol Metab TEM. 2009 Mar 1;20(2):58–65.  

27.  Zheng J, Greenway FL. Caenorhabditis elegans as a model for obesity research. Int J 

Obes. 2012 Feb;36(2):186–94.  



www.manaraa.com

115 

28.  Ashrafi, K. Obesity and the regulation of fat metabolism (March 9, 2007), WormBook, 

ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.130.1, 

http://www.wormbook.org.  

29.  Shtonda BB, Avery L. Dietary choice behavior in Caenorhabditis elegans. J Exp Biol. 

2006 Jan 1;209(1):89–102.  

30.  Williams KW, Elmquist JK. From neuroanatomy to behavior: central integration of 

peripheral signals regulating feeding behavior. Nat Neurosci. 2012 Oct;15(10):1350–5.  

31.  Avery L, Shtonda BB. Food transport in the C. elegans pharynx. J Exp Biol. 2003 Jul 

15;206(14):2441–57.  

32.  Hart, Anne C., ed. Behavior (July 3, 2006), WormBook, ed. The C. elegans Research 

Community, WormBook, doi/10.1895/wormbook.1.87.1, http://www.wormbook.org.  

33.  Avery L, Horvitz HR. Effects of starvation and neuroactive drugs on feeding in 

Caenorhabditis elegans. J Exp Zool. 1990;253(3):263–70.  

34.  Sawin ER, Ranganathan R, Horvitz HR. C. elegans Locomotory Rate Is Modulated by 

the Environment through a Dopaminergic Pathway and by Experience through a 

Serotonergic Pathway. Neuron. 2000;26(3):619 – 631.  

35.  You Y, Kim J, Cobb M, Avery L. Starvation activates MAP kinase through the 

muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx. Cell Metab. 

2006 Apr 1;3(4):237–45.  



www.manaraa.com

116 

36.  Avery, L. and You, Y.J. C. elegans feeding (May 21, 2012), WormBook, ed. The C. 

elegans Research Community, WormBook, doi/10.1895/wormbook.1.150.1, 

http://www.wormbook.org.  

37.  You Y-J, Avery L. Appetite control: worm’s-eye-view. Anim Cells Syst. 2012 Aug 

31;16(5):351–6.  

38.  Fujiwara M, Sengupta P, McIntire SL. Regulation of Body Size and Behavioral State 

of C. elegans by Sensory Perception and the EGL-4 cGMP-Dependent Protein Kinase. 

Neuron. 2002 Dec 19;36(6):1091–102.  

39.  Ben Arous J, Laffont S, Chatenay D. Molecular and Sensory Basis of a Food Related 

Two-State Behavior in C. elegans. PLoS ONE. 2009 Oct 23;4(10):e7584.  

40.  Hills T, Brockie PJ, Maricq AV. Dopamine and Glutamate Control Area-Restricted 

Search Behavior in Caenorhabditis elegans. J Neurosci. 2004 Feb 4;24(5):1217–25.  

41.  Van Buskirk C, Sternberg, PW. Epidermal growth factor signaling induces behavioral 

quiescence in Caenorhabditis elegans. Nat Neurosci. 2007;10(10):1300–7.  

42.  Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You Y, Sundaram MV, et al. 

Lethargus is a Caenorhabditis elegans sleep-like state. Nature. 2008;451(7178):569–

72.  

43.  Avery L. Caenorhabditis elegans behavioral genetics: where are the knobs? BMC Biol. 

2010;8(1):69.  



www.manaraa.com

117 

44.  Hao Y, Xu N, Box AC, Schaefer L, Kannan K, Zhang Y, et al. Nuclear cGMP-

Dependent Kinase Regulates Gene Expression via Activity-Dependent Recruitment of 

a Conserved Histone Deacetylase Complex. PLoS Genet. 2011;7(5):e1002065.  

45.  Gallagher T, Bjorness T, Greene R, You Y-J, Avery L. The Geometry of Locomotive 

Behavioral States in C. elegans. PLoS ONE. 2013 Mar 28;8(3):e59865.  

46.  Gallagher T, Kim J, Oldenbroek M, Kerr R, You Y-J. ASI Regulates Satiety 

Quiescence in C. elegans. J Neurosci. 2013 Jun 5;33(23):9716–24.  

47.  Flavell SW, Pokala N, Macosko EZ, Albrecht DR, Larsch J, Bargmann CI. Serotonin 

and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in 

C. elegans. Cell. 2013 Aug 29;154(5):1023–35.  

48.  Trent C, Tsung N, Horvitz HR. EGG-LAYING DEFECTIVE MUTANTS OF THE 

NEMATODE CAENORHABDITIS ELEGANS. Genetics. 1983 Aug 1;104(4):619–

47.  

49.  Hirose T, Nakano Y, Nagamatsu Y, Misumi T, Ohta H, Ohshima Y. Cyclic GMP-

dependent protein kinase EGL-4 controls body size and lifespan in C elegans. Dev 

Camb Engl. 2003 Mar;130(6):1089–99.  

50.  Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL. Control of C. elegans 

larval development by neuronal expression of a TGF-beta homolog. Science. 1996 

Nov 22;274(5291):1389–91.  



www.manaraa.com

118 

51.  Schackwitz WS, Inoue T, Thomas JH. Chemosensory Neurons Function in Parallel to 

Mediate a Pheromone Response in C. elegans. Neuron. 1996;17(4):719 – 728.  

52.  L’Etoile ND, Bargmann CI. Olfaction and Odor Discrimination Are Mediated by the 

C. elegans Guanylyl Cyclase ODR-1. Neuron. 2000;25(3):575 – 586.  

53.  Schaap P. Guanylyl cyclases across the tree of life. Front Biosci. 2005;10:1485–98.  

54.  Johnson J-LF, Leroux MR. cAMP and cGMP signaling: sensory systems with 

prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol. 2010;20(8):435 – 444.  

55.  Marden JN, Dong Q, Roychowdhury S, Berleman JE, Bauer CE. Cyclic GMP controls 

Rhodospirillum centenum cyst development. Mol Microbiol. 2011;79(3):600–15.  

56.  Ortiz CO, Etchberger JF, Posy SL, Frøkjær-Jensen C, Lockery S, Honig B, et al. 

Searching for Neuronal Left/Right Asymmetry: Genomewide Analysis of Nematode 

Receptor-Type Guanylyl Cyclases. Genetics. 2006 May 1;173(1):131–49.  

57.  Liu J, Ward A, Gao J, Dong Y, Nishio N, Inada H, et al. C. elegans phototransduction 

requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat 

Neurosci. 2010 Jun;13(6):715–22.  

58.  Inada H, Ito H, Satterlee J, Sengupta P, Matsumoto K, Mori I. Identification of 

Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis 

elegans. Genetics. 2006 Apr 1;172(4):2239–52.  



www.manaraa.com

119 

59.  Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, et al. Oxygen sensation 

and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature. 

2004;430(6997):317–22.  

60.  Couto A, Oda S, Nikolaev VO, Soltesz Z, de Bono M. In vivo genetic dissection of 

O2-evoked cGMP dynamics in a Caenorhabditis elegans gas sensor. Proc Natl Acad 

Sci [Internet]. 2013 Aug 12; Available from: 

http://www.pnas.org/content/early/2013/08/08/1217428110.abstract 

61.  Murayama T, Takayama J, Fujiwara M, Maruyama IN. Environmental Alkalinity 

Sensing Mediated by the Transmembrane Guanylyl Cyclase GCY-14 in C. elegans. 

Curr Biol CB. 2013 Jun 3;23(11):1007–12.  

62.  Coburn CM, Bargmann CI. A Putative Cyclic Nucleotide–Gated Channel Is Required 

for Sensory Development and Function in C. elegans. Neuron. 1996 Oct 1;17(4):695–

706.  

63.  Komatsu H, Mori I, Rhee J-S, Akaike N, Ohshima Y. Mutations in a Cyclic 

Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation 

in C. elegans. Neuron. 1996 Oct;17(4):707–18.  

64.  Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH. A 

Transmembrane Guanylyl Cyclase (DAF-11) and Hsp90 (DAF-21) Regulate a 

Common Set of Chemosensory Behaviors in Caenorhabditis elegans. Genetics. 2000 

May 1;155(1):85–104.  



www.manaraa.com

120 

65.  Coates JC, de Bono M. Antagonistic pathways in neurons exposed to body fluid 

regulate social feeding in Caenorhabditis elegans. Nature. 2002 Oct 

31;419(6910):925–9.  

66.  Daniels SA, Ailion M, Thomas JH, Sengupta P. egl-4 Acts Through a Transforming 

Growth Factor-β/SMAD Pathway in Caenorhabditis elegans to Regulate Multiple 

Neuronal Circuits in Response to Sensory Cues. Genetics. 2000 Sep 1;156(1):123–41.  

67.  Raizen DM, Cullison KM, Pack AI, Sundaram MV. A Novel Gain-of-Function Mutant 

of the Cyclic GMP-Dependent Protein Kinase egl-4 Affects Multiple Physiological 

Processes in Caenorhabditis elegans. Genetics. 2006 May 1;173(1):177–87.  

68.  Kaun KR, Sokolowski MB. cGMP-dependent protein kinase: linking foraging to 

energy homeostasis. Genome. 2008 Nov 26;52(1):1–7.  

69.  Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA, Coulthard A, et al. 

Natural Behavior Polymorphism Due to a cGMP-Dependent Protein Kinase of 

Drosophila. Science. 1997 Aug 8;277(5327):834–6.  

70.  Kaun KR, Riedl CAL, Chakaborty-Chatterjee M, Belay AT, Douglas SJ, Gibbs AG, et 

al. Natural variation in food acquisition mediated via a Drosophila cGMP-dependent 

protein kinase. J Exp Biol. 2007 Oct 15;210(20):3547–58.  

71.  Breer H, Shepherd GM. Implications of the NO/cGMP system for olfaction. Trends 

Neurosci. 1993;16(1):5 – 9.  



www.manaraa.com

121 

72.  Rosenzweig S, Yan W, Dasso M, Spielman AI. Possible Novel Mechanism for Bitter 

Taste Mediated Through cGMP. J Neurophysiol. 1999 Apr 1;81(4):1661–5.  

73.  Krizhanovsky V, Agamy O, Naim M. Sucrose-stimulated subsecond transient increase 

in cGMP level in rat intact circumvallate taste bud cells. Am J Physiol - Cell Physiol. 

2000;279(1):C120–C125.  

74.  Wang X, Robinson PJ. Cyclic GMP-Dependent Protein Kinase and Cellular Signaling 

in the Nervous System. J Neurochem. 1997;68(2):443–56.  

75.  Scheiner R, Sokolowski MB, Erber J. Activity of cGMP-Dependent Protein Kinase 

(PKG) Affects Sucrose Responsiveness and Habituation in Drosophila melanogaster. 

Learn Mem. 2004 May 1;11(3):303–11.  

76.  Dijke P ten, Hill CS. New insights into TGF-β–Smad signalling. Trends Biochem Sci. 

2004;29(5):265 – 273.  

77.  Savage-Dunn, C. TGF-β signaling (September 9, 2005), WormBook, ed. The C. 

elegans Research Community, WormBook, doi/10.1895/wormbook.1.22.1, 

http://www.wormbook.org.  

78.  Riddle DL, Swanson MM, Albert PS. Interacting genes in nematode dauer larva 

formation. Nature. 1981 Apr 23;290(5808):668–71.  



www.manaraa.com

122 

79.  Golden JW, Riddle DL. A pheromone-induced developmental switch in 

Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type 

temperature-dependent process. Proc Natl Acad Sci U S A. 1984 Feb;81(3):819–23.  

80.  Malone EA, Thomas JH. A screen for nonconditional dauer-constitutive mutations in 

Caenorhabditis elegans. Genetics. 1994 Mar 1;136(3):879–86.  

81.  Thomas JH, Birnby DA, Vowels JJ. Evidence for parallel processing of sensory 

information controlling dauer formation in Caenorhabditis elegans. Genetics. 1993 

Aug 1;134(4):1105–17.  

82.  Hu PJ. Dauer. WormBook: the online review of C elegans biology 

http://wormbook.org. 2007.  

83.  Bargmann CI, Horvitz HR. Control of larval development by chemosensory neurons in 

Caenorhabditis elegans. Science. 1991 Mar 8;251(4998):1243–6.  

84.  Ailion M, Thomas JH. Dauer Formation Induced by High Temperatures in 

Caenorhabditis elegans. Genetics. 2000 Nov 1;156(3):1047–67.  

85.  Stansberry J, Baude EJ, Taylor MK, Chen P-J, Jin S-W, Ellis RE, et al. A cGMP-

dependent protein kinase is implicated in wild-type motility in C. elegans. J 

Neurochem. 2001;76(4):1177–87.  



www.manaraa.com

123 

86.  Estevez M, Attisano L, Wrana JL, Albert PS, Massague J, Riddle DL. The daf-4 gene 

encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva 

development. Nature. 1993 Oct 14;365(6447):644–9.  

87.  Georgi LL, Albert PS, Riddle DL. daf-1, a C. elegans gene controlling dauer larva 

development, encodes a novel receptor protein kinase. Cell. 1990 May 18;61(4):635–

45.  

88.  Gunther CV, Georgi LL, Riddle DL. A Caenorhabditis elegans type I TGF beta 

receptor can function in the absence of type II kinase to promote larval development. 

Development. 2000 Aug 1;127(15):3337–47.  

89.  Murakami M, Koga M, Ohshima Y. DAF-7/TGF-beta expression required for the 

normal larval development in C. elegans is controlled by a presumed guanylyl cyclase 

DAF-11. Mech Dev. 2001 Nov;109(1):27–35.  

90.  Gruninger TR, Gualberto DG, Garcia LR. Sensory Perception of Food and Insulin-

Like Signals Influence Seizure Susceptibility. PLoS Genet. 2008;4(7):e1000117.  

91.  Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary Trade-

Offs, Pareto Optimality, and the Geometry of Phenotype Space. Science. 2012 Jun 

1;336(6085):1157–60.  

92.  Chelur DS, Chalfie M. Targeted cell killing by reconstituted caspases. Proc Natl Acad 

Sci. 2007 Feb 13;104(7):2283–8.  



www.manaraa.com

124 

93.  Beverly M, Anbil S, Sengupta P. Degeneracy and Neuromodulation among 

Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in 

Caenorhabditis elegans. J Neurosci. 2011 Aug 10;31(32):11718–27.  

94.  Greer ER, Pérez CL, Van Gilst MR, Lee BH, Ashrafi K. Neural and molecular 

dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab. 

2008 Aug;8(2):118–31.  

95.  Horvitz H, Chalfie M, Trent C, Sulston J, Evans P. Serotonin and octopamine in the 

nematode Caenorhabditis elegans. Science. 1982 May 28;216(4549):1012–4.  

96.  Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR. Tyramine Functions 

Independently of Octopamine in the Caenorhabditis elegans Nervous System. Neuron. 

2005 Apr 21;46(2):247–60.  

97.  Jansen G, Thijssen KL, Werner P, van derHorst M, Hazendonk E, Plasterk RHA. The 

complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet. 

1999 Apr;21(4):414–9.  

98.  Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca2+ probe composed of a single 

green fluorescent protein. Nat Biotech. 2001 Feb;19(2):137–41.  

99.  Chronis N, Zimmer M, Bargmann CI. Microfluidics for in vivo imaging of neuronal 

and behavioral activity in Caenorhabditis elegans. Nat Methods. 2007 Sep;4(9):727–

31.  



www.manaraa.com

125 

100.  DiPatrizio NV, Astarita G, Schwartz G, Li X, Piomelli D. Endocannabinoid signal 

in the gut controls dietary fat intake. Proc Natl Acad Sci [Internet]. 2011 Jul 5; 

Available from: http://www.pnas.org/content/early/2011/06/27/1104675108.abstract 

101.  Storr MA, Sharkey KA. The endocannabinoid system and gut–brain signalling. 

Curr Opin Pharmacol. 2007;7(6):575 – 582.  

102.  Woods SC. The Endocannabinoid System: Mechanisms Behind Metabolic 

Homeostasis and Imbalance. Am J Med. 2007;120(2, Supplement 1):S9–17.  

103.  Escartín-Pérez RE, Cendejas-Trejo NM, Cruz-Martínez AM, González-Hernández 

B, Mancilla-Díaz JM, Florán-Garduño B. Role of cannabinoid {CB1} receptors on 

macronutrient selection and satiety in rats. Physiol Behav. 2009;96(4–5):646 – 650.  

104.  Lucanic M, Held JM, Vantipalli MC, Klang IM, Graham JB, Gibson BW, et al. N-

acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis 

elegans. Nature. 2011 May 12;473(7346):226–9.  

105.  Avery L. The genetics of feeding in Caenorhabditis elegans. Genetics. 1993 

Apr;133(4):897–917.  

106.  Kiyama Y, Miyahara K, Ohshima Y. Active uptake of artificial particles in the 

nematode Caenorhabditis elegans. J Exp Biol. 2012 Apr 1;215(7):1178–83.  



www.manaraa.com

126 

107.  McKay JP, Raizen DM, Gottschalk A, Schafer WR, Avery L. eat-2 and eat-18 Are 

Required for Nicotinic Neurotransmission in the Caenorhabditis elegans Pharynx. 

Genetics. 2004 Jan 1;166(1):161–9.  

108.  Currie E, King B, Lawrenson AL, Schroeder LK, Kershner AM, Hermann GJ. Role 

of the Caenorhabditis elegans Multidrug Resistance Gene, mrp-4, in Gut Granule 

Differentiation. Genetics. 2007 Nov 1;177(3):1569–82.  

109.  Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Maricq AV. Neuronal Control of 

Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 

Ionotropic Glutamate Receptor. Neuron. 1999;24(2):347 – 361.  

110.  Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE. Influence of Gene 

Action Across Different Time Scales on Behavior. Science. 2002 Apr 

26;296(5568):741–4.  

111.  Kawli T, Tan M-W. Neuroendocrine signals modulate the innate immunity of 

Caenorhabditis elegans through insulin signaling. Nat Immunol. 2008 Dec;9(12):1415–

24.  

112.  Sulston J, Hodgkin J. Methods. (Wood, W. B., ed). The Nematode Caenorhabditis 

elegans. Cold Spring Harbor, New York: Cold Spring Harbor Press.; 1988. p. pp 587–

606.  



www.manaraa.com

127 

113.  Press WH (2007) Numerical recipes : the art of scientific computing. Cambridge, 

UK; New York: Cambridge University Press. xxi, 1235 p.  

114.  Chen S, Lee AY, Bowens NM, Huber R, Kravitz EA. Fighting fruit flies: A model 

system for the study of aggression. Proc Natl Acad Sci. 2002 Apr 16;99(8):5664–8.  

115.  Suzuki H, Kerr R, Bianchi L, Frøkjær-Jensen C, Slone D, Xue J, et al. In Vivo 

Imaging of C. elegans Mechanosensory Neurons Demonstrates a Specific Role for the 

MEC-4 Channel in the Process of Gentle Touch Sensation. Neuron. 2003 Sep 

11;39(6):1005–17.  

 

 

 



www.manaraa.com

128 

 

 

VITA 

 

Thomas Gallagher grew up in Scottsville, New York with his parents Mark and 

Linda Gallagher and younger siblings Terry and Erin. Tom graduated from Wheatland-

Chili Jr/Sr Highschool in 2004 and attended the State University of New York College at 

Geneseo, graduating in 2008 with a Bachelors of Science in Biochemistry and a Minor in 

Mathematics. In the Fall of 2008 he enrolled in the PhD program in the Department of 

Biochemistry at Virginia Commonwealth University and eventually joined the lab of Dr. 

Young-Jai You in September 2010.  

 


	REGULATION OF SATIETY QUIESCENCE: CYCLIC GMP, TGF BETA, AND THE ASI NEURON
	Downloaded from

	YOUR NAME HERE

